
 1

SUPREME COURT OF NEW JERSEY
 September Term 2005

 Docket No. 58,879

STATE OF NEW JERSEY,

 Plaintiff-Appellant,

v.

JANE H. CHUN, DARIA L.
DE CICCO, JAMES R. HAUSLER,
ANGEL MIRALDA, JEFFREY R.
WOOD, ANTHONY ANZANO, RAJ DESAI,
PETER LIEBERWIRTH, JEFFREY LING,
HUSSAIN NAWAZ, FREDERICK
OGBUTOR, PETER PIASECKI,
LARA SLATER, CHRISTOPHER
SALKOWITZ, ELINA TIRADO,
DAVID WALKER, DAVID WHITMAN
and JAIRO J. YATACO,

 Defendants-Respondents,

and

MEHMET DEMIRELLI and
JEFFREY LOCASTRO,

Defendants,

and

DRAEGER SAFETY DIAGNOSTICS,
INC.,

 Intervenor-Respondent.

SUPPLEMENTAL FINDINGS AND CONCLUSIONS OF REMAND COURT

On remand from the Supreme Court of New
Jersey: December 14, 2005

 2

Findings and Conclusions Submitted to
Supreme Court: February 13, 2007

On limited remand from the Supreme Court of
New Jersey: April 30, 2007

Supplemental Findings and Conclusions
Submitted to Supreme Court: November 8, 2007

Christine A. Hoffman, Deputy Attorney
General, and John A. Dell'Aquilo, Jr.,
Deputy Attorney General, appeared on behalf
of the State of New Jersey (Anne Milgram,
Attorney General, attorney).

Samuel L. Sachs of the firm Sachs & Sachs
appeared on behalf of Jeffrey R. Wood and
James R. Hausler.

Matthew W. Reisig appeared on behalf of
Christopher Salkowitz, Peter Lieberwirth,
Raj Desai and Peter Piasecki.

John Menzel of the firm Moore & Menzel
appeared on behalf of Anthony Anzano, David
Whitman, David Walker, Hussain Nawaz and
Jeffrey Ling.

Evan M. Levow of the firm Levow & Costello
appeared on behalf of Jane H. Chun, Lara
Slater, Elina Tirado, and Frederick Ogbutor.

Jonathan A. Kessous of the firm Garces &
Grabler appeared on behalf of Jairo Yataco
and Angel Miralda.

Arnold N. Fishman of the firm Fishman,
Littlefield & Fishman appeared on behalf of
amicus curiae New Jersey State Bar
Association.

Jeffrey E. Gold of the firm Gold & Laine
appeared on behalf of amicus curiae New
Jersey State Bar Association.

 3

Jeffrey Schreiber of the firm Meister Seelig
& Fein appeared on behalf of intervenor
Draeger Safety Diagnostics, Inc.

KING, P.J.A.D., SPECIAL MASTER

TABLE OF CONTENTS
Page

I. PROCEDURAL HISTORY 4

II. SUPPLEMENTAL ON BURDEN OF PROOF 6

III. EXPERT TESTIMONY . 7

 1. OVERVIEW . 7

 2. BRUCE GELLER 16

 3. NORMAN DEE . 28

 4. JOHN WISNIEWSKI 36

 5. THOMAS E. WORKMAN, Jr. 48

 6. BRIAN SHAFFER 62

IV. FINDINGS AND CONCLUSIONS OF LAW 79

 1. THE BEGINNING OF THE END 79

 2. THE CRITICAL ISSUES 81

A. FUEL CELL DRIFT 81

B. THE BUFFER OVERFLOW 84

C. WEIGHTED AVERAGES 88

D. LACK OF STANDARDS 89

E. CYCLOMATIC COMPLEXITY 91

F. DESIGN AND STYLE 92

 1. OLDER STYLE 92

 4

 2. GLOBAL VARIABLES 94

 3. HEADERS 97

 4. CORE ROUTINES 98

 5. COMMENTS 99

 6. UNCALLED FUNCTIONS 99

G. CATASTROPHIC ERROR DETECTION OR ILLEGAL
OPCODE TRAP100

H. ERROR DETECTION LOGIC 102

 I. SOFTWARE PROGRAM TOOL – LINT 103

J. SOURCE CODE WRITING AND REVIEW 106

V. FURTHER CONCLUSION 107

SUPPLEMENTAL FINDINGS AND CONCLUSIONS OF REMAND COURT

I. PROCEDURAL HISTORY

We filed our initial findings and conclusions on February

13, 2007. The Supreme Court heard argument on April 5, 2007.

Consequent upon argument, the Court issued an order on April 30,

2007 (Order) temporarily remanding the matter to the Special

Master for the limited purpose of providing defendants the

opportunity to conduct at their expense an analysis of the

software used in the Alcotest 7110 MKIII-C, NJ 3.11 (Alcotest).

The remand was limited to determining whether firmware version

NJ 3.11 reliably analyzed, recorded and reported alcohol breath

test results. The Court’s order further provided the outline of

 5

the protocol for independent source code testing, now that

Draeger Safety Diagnostics, Inc. (Draeger) was a party and

finally had agreed to cooperate in a scientific inquiry

concerning the reliability of its product.

When defendants and Draeger could not agree on an

independent software house for source code testing, the Court

issued a supplemental order on May 22, 2007 (Supplemental Order)

requiring the affected parties to designate their own experts.

Elaborate discussions ensued which resulted in examination of

the Alcotest source code under non-disclosure agreements by two

allegedly independent software houses: (1) SysTest Labs, Inc.

(SysTest) designated by Draeger and (2) Base One Technologies

(Base One) designated by defendants. The Special Master

received the reports of the two experts in due course. They

disagreed. The Special Master then scheduled and conducted a

testimonial hearing on the experts’ reports, pursuant to the

Court's supplemental order.

We now advise the Supreme Court that the remand hearing

conducted at the Camden County Courthouse for ten days between

September 17, 2007 and October 11, 2007, with summations on

October 23 and 24, 2007, did not change the Special Master’s

opinion expressed in the initial findings and conclusions

contained in his February 13, 2007 report. We conclude that the

 6

Alcotest, the subject of scrutiny in this proceeding, is

scientifically reliable as an evidentiary breath testing

instrument, as to both the hardware and software elements,

subject to the conditions set forth in the Special Master’s

initial report and this supplemental report.

 Our review of the testimony of the witnesses now follows,

along with our more elaborate conclusions.

II. SUPPLEMENTAL ON BURDEN OF PROOF

 All agree the burden of proof in this proceeding is on the

proponents of the evidence, the State and Draeger, by clear and

convincing evidence. The parties also agree that there is no

extant New Jersey case which quantifies this burden. All agree

that it rests somewhere between the customary civil burden of

reasonable probability (51%) and beyond a reasonable doubt

(perhaps 98+% or 99+%). One well-recognized authority, Judge

Jack Weinstein of the Eastern District of New York, has

expressed this view in a criminal law context: "Quantified, the

probabilities might be in the order of above 70% under a clear

and convincing evidence burden." United States v. Fatico, 458

F. Supp. 388, 404 (E.D.N.Y. 1978), aff'd, 603 F.2d 1053 (2d Cir.

1979), cert. denied, 444 U.S. 1073, 100 S. Ct. 1018, 62 L. Ed.

2d 755 (1980). See United States v. Copeland, 369 F. Supp. 2d

275, 286 (E.D.N.Y 2005), aff'd, 232 Fed. App'x. 72 (2d Cir.

 7

2007) (Judge Weinstein cites Fatico with approval of a 70%

burden in "clear and convincing standard" cases).

 The Oregon Supreme Court has referred favorably to research

disclosing a purported national consensus on the "clear and

convincing" burden of proof as a 75% likelihood. Willbanks v.

Goodwin, 709 P.2d 213, 218 n.9 (Or. 1985). Personally, we might

be inclined to put the burden as high as 85% to 90%. However,

we conclude that the State and Draeger have met the clear and

convincing burden in this proceeding.

III. EXPERT TESTIMONY

 1. Overview

 The parties called four expert witnesses: Bruce Geller on

behalf of Intervener Draeger; Norman Dee on behalf of the

State; and John Wisniewski and Thomas Workman on behalf of the

defense. Geller and Wisniewski examined the Alcotest's source

code for obvious issues and consistency with the algorithms

pursuant to the Court’s supplemental order dated May 22, 2007.

Dee and Workman drew conclusions on the code's scientific

reliability based on their analyses of the static code reviews

performed by the other experts. Neither Dee nor Workman saw the

actual code, although Dee scanned portions of it shortly before

this remand hearing. All four witnesses submitted reports.

 8

This court found each of them qualified in their areas of

expertise.

 This court called Brian Shaffer, an employee of Draeger who

wrote the customized portions of the source code for New Jersey,

as a witness. Shaffer testified as both a fact and an expert

witness but did not prepare a written report.

 Because of the need to analyze many pages of testimony to

fully understand each expert's opinion on any particular issue,

we provide detailed summaries of their findings and conclusions

with comments, where appropriate, on the weight this court

placed on their testimony. The order of these summaries

corresponds to the appearance of the witnesses on the stand,

except for Shaffer who also appeared as a State rebuttal

witness. To assist the Court in its understanding of this

highly technical evidence, we present the following overview of

the testimony.

 Geller was a software quality engineer who worked for

SysTest of Denver, Colorado, a nationally recognized company

which specializes in software testing. Geller and another

employee reviewed the Alcotest's source code under the

supervision of a senior project director. Although their report

was a collaborative effort, Geller fully agreed with its

findings.

 9

 Geller testified that the source code was written by more

than one programmer and evolved over numerous transitions.

Although the code did not adhere to usual software design "best

practices," he did not find any defects intentionally written to

produce inaccurate test results. Geller's review identified

three issues with the code: complexity; use of global variables;

and the presence of a buffer overflow.

 Relying on a software metric known as cyclomatic

complexity, Geller measured the number of paths through the code

and determined that it was highly complex. He explained that

the code's complexity made it more difficult to understand and

maintain, which placed an added burden on the programmers. A

highly complex code also increased the inherent risks of

defects. In Geller's opinion, however, the source code’s

complexity did not affect the Alcotest’s accuracy or cause

failures in the interface between software and hardware.

 SysTest's review also discovered that the code used a

number of global variables. Unlike locally declared variables,

global variables were accessible from any function within an

application and could be used throughout its duration. Because

global variables could be intentionally or unintentionally

modified by any function in the application, Geller believed

their presence increased the risk of program error and their use

 10

should be limited. Nonetheless, he maintained that the use of

global variables did not negatively impact on his opinion that

the Alcotest's software was reliable.

 Geller, however, did find one serious error in the source

code which he identified as a buffer overflow. By attempting to

store more bytes or units of information into an allocated

variable than space available, the buffer overflow invalidated

the reported breath test result on the alcohol influence report

(AIR) under well-defined conditions. The error occurred only in

very limited circumstances where the first two breath tests were

out of tolerance, the subject provided a third breath sample

which was within tolerance of each of the other two samples, and

the lowest of the six recorded test results was the second

breath sample's electrochemical (EC) test result. In these

cases, the AIR would not report the lowest breath test result

even though it retained and reported the measured alcohol

concentration values for the six tests. According to Geller,

the buffer overflow error could be easily corrected with one

keystroke by replacing the number "four" with a "six" at a

particular place in the code.

 Wisniewski's review was far more critical of the Alcotest's

source code. Base One Technologies (Base One) retained his

firm, Winc Research, to determine if the code was scientifically

 11

reliable. Because Wisniewski believed that it was time-

prohibitive to test complex software, he relied on industry

standards or development methodologies to assess a source code's

reliability. In his opinion, the use of these methodologies

produced the most error-free and reliable software. Wisniewski

found that the Alcotest's source code did not follow any system-

wide development methodology. The lack of use of any standards

prevented the testing of all the critical paths in the software.

 Relying on a program called Lint, Wisniewski identified

approximately 19,500 defects in the Alcotest's source code. To

insure the code's reliability, he recommended the removal of

every defect. While many of the defects reflected poor coding

practices or simply bad housekeeping in his opinion, Wisniewski

warned that they could cause unintended consequences in other

parts of the program. He then identified nine major defects

which he claimed could ultimately effect the breath alcohol

reading. Wisniewski, however, was unable to say with any

reasonable certainty that any of these defects produced a real

problem that could influence the test result on an AIR.

 Dee testified as a witness for the State at the initial

hearing in October 2006, when this court found that he was

qualified as an expert in data management business systems and

fully credited his testimony. Dee described SysTest as a well-

 12

established company in the computer industry. He was impressed

with SysTest's ability to reverse engineer the pseudo source

code, and especially with Geller's ability to find the buffer

overflow error. Dee did not believe that the source code's

complexity affected the instrument's performance and said it

simply reflected a tradeoff between performance and ease of

maintenance. He concluded that SysTest performed an in-depth

review and accepted its finding that there was no evidence of

any attempt to maliciously alter the Alcotest's source code.

 Dee was not impressed with Base One's analysis. He did not

accept Wisniewski's criticism of the code's lack of standards or

his use of Lint to quantify errors without considering their

quality. Dee continued to maintain, as he did at the initial

hearing, that black-box testing was the most appropriate method

to determine the Alcotest's reliability. If black-box testing

disclosed a problem, then he would examine the source code to

see if its logic or a hardware-related error was the cause.

 Workman was a licensed engineer before he attended law

school. He currently operates a computer forensic business and

works as a court-appointed criminal defense attorney in

misdemeanor court in Massachusetts, representing clients charged

with operating-under-the-influence and other misdemeanors. Like

Wisniewski, Workman believed that the source code's complexity

 13

and design made it impossible to test and, therefore, it was not

reliable. He agreed with Wisniewski that the source code's

reliability would significantly increase if Draeger applied

standards to its software development. Workman also criticized

Draeger for the lack of any quality assurance organization to

test the source code and support Shaffer's programming efforts.

 Workman supported Wisniewski's selection of Lint to find

source code modules with particular problems. After reviewing

the Lint warnings, he concluded that their sheer numbers

increased the likelihood of producing a totally wrong result

such as an incorrect reporting of a breath test as too high or

low, or a sample as insufficient. In his view, the most

significant problem identified by Lint involved the Alcotest's

use of an unscientific formula in its so-called averaging

routine. He understood the routine or algorithm averaged the

last breath measurement with the sum of the three previous

measurements, minimizing the earlier values. He further

supported Wisniewski's finding that the EC and IR sensors did

not operate independently despite Draeger's assertions to the

contrary.

 Workman generally accepted Wisniewski's testimony and

concluded that Base One delved more deeply into the source code

than SysTest. In his opinion, the Alcotest's source code was

 14

not capable of measuring and accurately reporting the

concentration of alcohol in human breath.

 Finally, Shaffer testified at the court's request about the

technical aspects of writing this source code. He explained

that several persons wrote the Alcotest's code, which he also

described as complex. Contrary to the defense witnesses,

however, he did not believe that a more highly organized and

consistently structured code would be more understandable.

Shaffer further explained that the instrument's core routines

were written in Draeger's offices in Luebeck, Germany, while he

was responsible for its customization in the United States

including the changes made to the Alcotest after State v. Foley,

370 N.J. Super. 341 (Law Div. 2003). Although the code did not

delineate or "wall-off" the core routines, Shaffer was aware of

their locations and avoided making any changes to them.

 Shaffer performed his own static code review. While

acknowledging that there was no dedicated quality assurance in-

house designee with respect to software, he stated that Draeger

subjected the code to black-box testing by its technical writer,

service department, and ultimately the consumer. He disagreed

with Base One's assertion that Draeger's lack of use of any

standards prevented the testing of critical paths in the

software.

 15

 Shaffer agreed with several findings by Base One and

SysTest. For example, he agreed with Base One's finding that

the source code failed to detect catastrophic errors or illegal

opcode traps and recommended resetting the microprocessor

whenever such a situation arose to restart the test anew. In

fact, Shaffer testified that Draeger already had begun

implementing this reset feature with its customers in the United

States. He also agreed that the source code relied on global

variables, but believed their benefits outweighed any potential

risks. He further agreed that the code relied on a weighted

average routine, but said it was absolutely necessary to assign

the greatest weight to the most recent value in order to get an

accurate breath test measurement.

 Shaffer readily admitted that in error he created the

buffer overflow, that it existed only in New Jersey, and that it

should be corrected. For pending cases, he prepared a series of

instructions to compensate for the overflow and ascertain the

true breath test result. He also readily admitted that the fuel

cell slowly depleted over time, but he adamantly disagreed that

the code's aging compensation routine affected the analysis of a

subject's breath. The formula for the depletion of the fuel

cell used in the control tests was in part derived from the

constant infrared (IR) value but did not corrupt the breath test

 16

results in any way. For this reason, Shaffer insisted that the

Alcotest used two independent technologies to analyze breath

samples.

 The Court will find a review of the summations of counsel

very helpful. All summations were carefully prepared and well

delivered, and will help greatly in understanding the testimony.

2. Summary of Testimony of Draeger's Expert, Bruce
Geller: September 17, 18 and 19, 2007

 Draeger presented the testimony of Bruce Geller, a senior

software quality engineer with SysTest Labs in Denver, Colorado

(1RT18).1 Geller graduated in 1978 with a degree in biology from

the University of Colorado (1RT28-1RT29). After working as an

accountant, he went back to school and, in 1992, earned a

Bachelor of Science degree in computer science from Metropolitan

State College in Denver (1RT29;1RT40). For the past four years,

Geller has worked at SysTest (2RT135).

 SysTest performs commercial software testing along with

independent verification and validation services for private and

public entities (1RT20). It also is one of three laboratories

in the country which reviews and tests voting system software to

verify that it conforms to the Election Assistance Commission's

software standards (1RT19;1RT27;2RT162). SysTest has approximately 100

1 For designation of transcripts, see Appendix A.

 17

employees, including ten source code reviewers, and maintains

strategic partnerships with hardware-specific testing

laboratories (1RT20-1RT21;2RT138-2RT139).

 Geller and another employee, Dan McNamee, reviewed the

Alcotest's source code, version NJ 3.11, under the direction of

Geoffrey Pollich, a senior products manager (1RT30-1RT31;1RT67).

SysTest also hired a professional translator to assist in the

translation of the German-language component of the code

(1RT31). Although the report was a collaborative effort, Geller

approved the final version before it was released (3RT4-3RT5).

 During his career in the software industry, Geller has

reviewed more than two million lines of source code (1RT27).

Prior to this hearing, however, he had never testified in court

about a source code review or any other topic nor did he have

any experience with breath testing instruments (1RT35;1RT45).

We qualified Geller as an expert, noting that as the trier of

fact, we would decide the weight of his testimony (1RT45-1RT46).

 Draeger retained SysTest to inspect the Alcotest's source

code for the consistency of the application of its algorithms

whether the same inputs produced the same results and any

other observable issues (1RT54;2RT149;3RT6). Draeger did not

charge SysTest with testing the hardware nor did it give SysTest

 18

an instrument on which to "run" the code (1RT107;2RT53;2RT150-

2RT151).

 Geller described source code as the human readable version

of a program (1RT47). This consists of statements created by a

programmer with a text editor or a visual programming tool which

are then saved in a file (SysTest report at 6).2 As in English,

source code is written from top to bottom and reads from left to

right (1RT47). There is no requirement regarding a source

code's organization; instead, this is an issue of style (2RT6).

A compiler translates the source code into machine-readable code

(2RT57;2RT194).3

 Source code is segregated into separate functions within

certain files (2RT194). A function is a named block of code

that contains the instructions to retrieve a specified text

screen in a single file (2RT56-2RT57). A call is made to that

function providing the index number of the string within the

file and the string is retrieved (2RT57). The Alcotest source

code contained 504 or 505 functions (2RT103). Some of the

functions were left inactive because certain operational aspects

were unused under New Jersey's requirements (2RT92-2RT93).

2 See Assessment Report for Draeger Safety Diagnostics, Inc.
Alcotest 7110 MKIII-C. New Jersey Firmware Version NJ 3.11 by
SysTest Labs, Inc., August 28, 2007 (I-20).
3 For a detailed explanation of how to write source code, see
3RT9-3RT17.

 19

 Using an analogy to a player piano, Geller explained that

the piano (or Alcotest) will not work unless a person (or

compiler) transcribes the sheet music (or source code) onto a

roll with holes (or a binary file composed of bits or non-human

readable series of zeros and ones) (1RT47-1RT51). However,

unlike a piano roll with multiple holes making concurrent

sounds, the Alcotest's microprocessor is single-threaded (1RT49-

1RT50;2RT79;2RT170-2RT171). Because everything must pass

through the central processing unit (CPU), which can only

process one course of logical instructions at a time, the

current state of the running application is placed on hold in a

stack frame for later retrieval (1RT110-1RT111).

 SysTest performed a static code review of New Jersey

firmware version 3.11 (2RT9;2RT39). Unlike a dynamic analysis,

static code analysis examines computer software without actually

executing programs built from that software (2RT11). The

purpose of the review was not to translate all 45,000 lines of

code, but to examine things of interest (1RT152;2RT17). A

component of the static review included reverse engineering of

the code by SysTest (2RT12).

 To begin the source code review, Geller used Module Finder,

an in-house software program developed by SysTest about a year-

and-a-half earlier (1RT55-1RT56;2RT155). SysTest created the

 20

program to determine the number and length of the individual

functions, the extent of the comments embedded in the functions,

and the number of source code lines (1RT55). Geller described

Module Finder as a work-in-progress and noted that it did not

adhere to any development standards, which made its software

more difficult to maintain (2RT155).

 Next, Geller processed the code through a software program

called Understand for C++ (1RT60). That program produced

illustrations of the invocation tree, which showed the order and

sequence in which functions might be executed (1RT62;3RT46).

Geller analogized the invocation tree to a street map, where

rectangles were given function names and lines showed the

logical paths from one function to the next (2RT184). The

invocation tree served as a guide for reviewing the code (1RT69-

1RT70). SysTest also created control flow diagrams, which

illustrated the logical paths through each function's execution

(2RT184-2RT185).

 Geller also ran the code through two additional software

programs: (1) C-Doc, which is a C-language-specific source code

review tool; and (2) Fortify SCA (1RT68). C-Doc prints out

measurements, function lengths and names, the extent of the

comments and lines of code, and some information on complexity

(1RT68). Because it reports a lot of the same information, he

 21

used C-Doc mostly to verify the metric results from Understand

for C++ (1RT68). Unlike those programs, Fortify SCA is a

security-oriented application which looks for vulnerabilities in

the code (1RT68-1RT69).

 There are a multitude of available software programs, and

Geller admitted that he was not familiar with many of them

(2RT32). He never heard of the Lint program until he read Base

One's report (1RT70-1RT71;1RT73;2RT35). From his on-line

research, Geller found a January 1979 paper written by S.C.

Johnson which explained that "Bell Labs" created Lint at a time

when programming was done on large mainframe computers in shared

environments (1RT71;2RT41). By enforcing strict syntax rules,

Lint warned programmers of possible mistakes in their code

(1RT73). Because some of the "mistakes" were not necessarily

errors in the software, Lint was known for verbosity (1RT73-

1RT75;1RT82-1RT83;1RT85). Geller believed that (1) Lint was

created as a development tool, not a review tool; (2) it was

outdated after the development of personal computers; and (3) it

produced output not particularly informative to programmers

(2RT38;3RT63;3RT69). Thus, he believed that the Lint document,

contained in Appendix C of SysTest's report, was irrelevant

(3RT71).

 22

 Geller's review of the source code revealed that it was

written by more than one programmer and evolved over numerous

transitions (1RT187-1RT188). It contained comments written in

German and English, which he explained served to jog the memory

of the programmer who wrote them and to advise future

programmers (1RT188;3RT13-3RT14;3RT24;3RT133). Geller used

the comments to find his way through the code (1RT190).

 The review by SysTest led to the identification of three

issues with the Alcotest's software: (1) its complexity; (2)

its use of global variables; and (3) a buffer overflow

(1RT102;1RT108;1RT114). Regarding complexity, Geller explained

that some functions had a fairly large number of comparison

operations which resulted in "branching" of the code (1RT102).

To measure the number of independent paths through the

application's code, he used a software measurement developed by

Thomas McCabe called "cyclomatic complexity" (2RT98-2RT99).

 Because high complexity increases the risk of inherent

defects, coding guidelines recommend keeping the cyclomatic

complexity of functions under ten, and or even seven (2RT100-

2RT101;SysTest report at 23). SysTest identified more than

eighty-one modules whose cyclomatic complexity of functions was

in excess of ten and three in excess of a hundred (3RT7;SysTest

report at 23-35). While restructuring the code could reduce its

 23

complexity, Geller said that the presence of modules with high

complexity indices did not effect the instrument's accuracy

(2RT102;3RT7-3RT8). He also said that excessive complexity did

not cause failures in interfaces between software and hardware

(3RT22). Because complexity related to the ease of

understanding and maintenance, its presence did place an

increased burden on the programmers who work with the software

(3RT21).

 Geller also addressed the source code's use of global

variables to store all test and result data (3RT117). Unlike

locally declared variables designed for specific purposes within

small subsets of the code, global variables are accessible from

any function within an application (1RT108-1RT109;SysTest report

at 10). Also unlike local variables which pass from existence

after a single use, global variables can be used throughout the

duration of the program (3RT110). Thus, global variables make

information available without need for the resources required to

pass a value from one function to another (2RT85;3RT116).

 However, data contained in global variables are not

protected and can be changed intentionally or unintentionally at

any time by any function in the application (2RT83). Because

they can be potentially modified from anywhere, global variables

should not be used to store critical data (2RT83). Given the

 24

increased risk of program error, their use should be extremely

limited (2RT83;2RT85-2RT88). Nonetheless, Geller said there was

nothing inherently wrong with global variables and their

presence did not impact negatively on his conclusion that the

Alcotest's software was reliable (1RT114). In fact, he said

that some computer languages such as COBOL and assembly

only use global variables (1RT114;2RT90;3RT107-3RT108).

Moreover, the preponderance of the code's variables were locally

declared (2RT90).

 Geller testified that Fortify SCA found a "real error" in

the source code which he referred to as a "buffer overflow"

(1RT114;1RT116;1RT163). Buffer overflow occurs when a program

attempts to store more bytes or units of information into an

allocated variable not large enough to hold them (1RT114).

Geller used the analogy of trying to park a full-sized Cadillac

in a compact-car parking space (1RT114;2RT119). After the

computer program warned of a potential overflow, Geller opened

the code to the particular file and function, and saw a

situation in the source code where six bytes were being parked

into a space allocated to hold four (1RT115;1RT118). The two

overhanging values were used by the next two declared variables

and thus were overridden (1RT116;1RT126-1RT127).

 25

 Geller explained that the buffer overflow affected only one

aspect of the AIR, and not the way in which measurements were

read (1RT118). Specifically, it arose only in very limited

circumstances where: (1) the results of the first two breath

tests were out of tolerance; (2) a third breath test was taken;

(3) the result of the third breath test fell between the values

of the first two and was centered enough to be within tolerance

of both; and (4) the ER result from the second breath test was

the lowest measured value (1RT119-1RT120).4 In these cases, the

AIR would not report the actual lowest breath test result

because the sorting routine would read a ".32" in place of the

ER result from the second breath test (1RT121-1RT126;2RT124).

The overflow problem, however, could easily be corrected with

one keystroke by replacing the number "four" with a "six" at the

proper place in the code (1RT129-1RT130;2RT124-2RT125). Base

One's report did not identify the buffer overflow problem

(1RT117).

 Geller acknowledged that the code was not written in a

manner consistent with usual software design "best practices"

(3RT135-3RT137). While such practices are set out in various

4 As represented by State's counsel at the remand hearing, the
record from the initial hearing established there were no
instances where tolerances required a third test in the
Middlesex County data (1RT145-1RT146).

 26

publications, programmers often have to adapt them to fit the

available resources (3RT141). In cases where a code deviated

from best practices, it still was safe to use but this placed an

added burden on programmers to understand it (3RT140-3RT141).

Geller did not find anything in the code that was intentionally

written to skew the results (1RT133-1RT134).

 Finally, Geller addressed the key findings in Base One's

report (1RT135-1RT163). Among other things, he did not know if

there were any "industry standards" that governed source code

review (1RT136;1RT140;2RT24;2RT51). In Geller's opinion,

quality software could be developed without governing standards

and conversely, software could meet standards but still be of

questionable quality (1RT137;1RT140-1RT141). He was not

personally familiar with any of the standards cited in Base

One's report nor did he know if any of those standards applied

to the Alcotest (2RT50-2RT51).

 Overall, he found there was nothing particularly unusual

about the Alcotest software in terms of its style and

organization (1RT137;3RT76-3RT77). He was unconcerned that the

software did not contain confidentiality or copyright notices,

or that some sections of the code were not "walled off"

(1RT138). Geller explained that programmers had to exercise

 27

caution, but that he never had any classification restrict his

access to all or part of a code (1RT138-1RT139).

 He also did not agree with Base One's finding that there

was proof of incomplete software testing (1RT143-1RT144).

Instead, Geller noted that some branches of the source code

would never be executed such as requirements of other

jurisdictions and did not require any testing (1RT144-1RT145).

Moreover, he disagreed with Base One's finding that the

instrument produced unreliable results because its catastrophic

error detection was disabled (1RT147-1RT148). Geller expected

that the instrument would go into an endless wait cycle, meaning

it would basically cease to function, and not produce a final

result in the event of a catastrophic error (1RT148-1RT149). He

also objected to Base One's other findings, noting that some of

its criticisms were invalid, undocumented, unimportant, not

peculiar to the Alcotest, or normal in software (1RT150-1RT163).

 Geller fully agreed with all of the findings and

conclusions in SysTest's report (3RT5-3RT6;3RT116). Based on

his review and the review by SysTest, Geller concluded that the

Alcotest software was reliable and consistent when used in

accordance with the instructions in the State Police user manual

(1RT164;2RT188;3RT6-3RT7). Geller saw no indication of any

inconsistencies with the algorithms as documented in the

 28

software, and considered buffer overflow as the only real error

(1RT163;3RT5).

 We found Geller an honest and technically impressive

witness, without bias. We fully credit his testimony.

3. Summary of Testimony of State's Expert, Norman Dee:
September 19 and 20, 2007

 Norman Dee testified as a State witness at the initial

Alcotest remand hearing in October 2006. At that time, we

qualified him as an expert in data management business systems

(30T60-30T61).5 We incorporate by reference his testimony on

that occasion.

 At the State's request, Dee analyzed the expert reports by

SysTest and Base One and prepared a report addressing their

static code reviews (4RT5;4RT9). He also examined the experts'

work materials and unpublished appendices and scanned the code,

but only after he wrote his report, when the code finally first

became available to him, two weeks before this remand hearing

(3RT157;4RT17-4RT18).

Dee had performed static code reviews of embedded systems

in the late 1970s and early 1980s (4RT13;4RT137). Although he

never wrote embedded code, he reviewed and performed problem

determinations of embedded code for large IBM mainframes and

5 See transcript of October 18, 2006 (morning).

 29

mid-range computers (4RT137;4RT239). He defined his "world"

today as one of larger, multi-user systems (4RT187).

 Dee described SysTest as a well-known, established company

in the computer industry with a reputation for thorough and

independent testing of source code (3RT157). Dee was

particularly impressed by SysTest's reverse engineering of the

pseudo source code, a descriptive English narrative of the

algorithms without language-specific syntax (3RT159;4RT15;4RT19;4RT169).

In other words, SysTest reviewers read the source code, which is

not very human-friendly, and turned it into fairly human-

friendly statements by looking at the modules ("the logic

itself, the post-compiled code") and typing out the flow

(4RT170-4RT171;4RT176). By reverse engineering the pseudo code,

which usually was written before the actual code, SysTest was

able to identify the main core program and recreate the design

of the product (3RT159-3RT160;4RT20;4RT175). Dee also was very

impressed with SysTest's ability to find the buffer overflow

error; this discovery clearly demonstrated the level of

SysTest's competence and the independent nature its review

(3RT160;3RT175).

 Regarding SysTest's key findings, Dee did not believe that

cyclomatic complexity affected the instrument's performance

(3RT173). To the contrary, he believed that the presence of

 30

large numbers of "decision trees" in one module was better than

breaking them into additional modules in terms of system

performance (3RT173). He defined decision trees as boxes

containing expressions of code from which branched other boxes,

with a "calling program" or "main module" deciding which box to

proceed to depending on what the code ordered (4RT181-4RT182).

Thus, Dee considered cyclomatic complexity as a stylistic issue

which implicated a tradeoff between performance and ease of

maintenance (4RT189-4RT190;Dee report at 27).6

 While Dee recognized the potential significance of buffer

overflow, he believed this was a limited vulnerability (3RT175).

He described the problem here as a situation where six values

must be put into four boxes (4RT193;4RT212). Because of the

closed nature of the application in this embedded system, Dee

explained that the situation in which this "three tests" error

occurred was quite uncommon (3RT175;Dee report at 27).7 For that

reason, he surmised that the problem never arose in field

testing and that it took a program tool specialized in exposing

vulnerabilities to raise it as an issue (4RT134-4RT135). That

program tool, Fortify SCA, checked the source code for

6 See Comments on the Source Code Reviews by SysTest Labs, Inc.
and Base One Technologies, Inc., by Norman Dee, The CMX Group,
September 4, 2007 (SR-4).
7 Dee defined an embedded system as "the combination of hardware
and software to perform a specific function" (4RT6).

 31

approximately 150 different kinds of exposure and code issues

(4RT236). Dee said, as did Geller, this flaw could easily be

fixed (3RT175). He recommended correction in a future release

(Dee report at 27).

 Dee acknowledged that SysTest's report identified numerous

unused or uncalled modules, which consumed memory and space in

the source code (3RT187;4RT74-4RT75). While their presence

could be due to the carelessness of programmers, he believed

they were more typical of software development projects where

code was developed and used for multiple customers, was

decommissioned, or was developed for future releases

(3RT187;4RT74-4RT75;Dee report at 29). Dee explained that it

was more convenient to leave these unused functions in the code,

than to remove them (3RT187-3RT188;4RT74). In any event, Dee

thought their presence was a matter of style and did not effect

the reliability or results of the executed program (3RT188).

 Dee accepted SysTest's conclusion that its static code

review (or "desk checking") did not find anything in the source

code that would cause irrational or unreliable results (3RT176).

Because static review works with the real code and hypothetical

values, it is considered "white-box" testing (3RT167). Dee,

however, reiterated his prior testimony that "black-box" testing

was the most appropriate method to determine the Alcotest's

 32

reliability and accuracy (3RT197-3RT198;4RT151). If black-box

testing disclosed a problem, Dee would want to look into the

source code to see if a logic-related or hardware-related error

was the cause (4RT43). He assumed that black-box testing did

not identify the buffer overflow issue because the underlying

circumstances never actually arose in the field (4RT134-

4RT135;4RT151-4RT152).

 Dee, however, seriously questions many of the findings in

Base One's report. For example, he did not think it was

impossible to fully test the source code given the singular

function of this application (3RT177). He also said it was

standard operating procedure in mature systems to disable the

capabilities of the processor which detect catastrophic errors

(3RT178-3RT179). Dee explained that these aborts were disabled

and replaced with software which "captured" the errors so that a

determination could be made as to whether the error was

recoverable or not, or whether a more meaningful message should

be written (3RT179;4RT56).

 Dee also disagreed with Base One's statement that the

source code ignored or suppressed error messages unless they

occurred a large number of consecutive times (3RT179-3RT181).

In his opinion, this was normal in embedded systems in order to

wait for the coordination of the application with the operating

 33

system or hardware (3RT181;Dee report at 7-8). Thus, the

purported error did not mean something was wrong but rather

something simply was not ready (3RT181). For example, there

might be slight timing differences between internal components

which needed adjustment (3RT180-3RT181;Dee report at 8).

 Dee also addressed SysTest's and Base One's criticism of

the source code's extensive use of global variables (3RT182-

3RT184). He agreed that a programmer must be careful to avoid

overwriting a global variable (3RT183;4RT204). If an error

occurred, a global variable would remain until the system was

reset, re-initialized or re-powered whereas a local variable

remained only for the specific calculation and then vanished

(4RT233-4RT234). On the other hand, the use of global variables

conserved memory (as the only place in memory where that

variable was found) and increased efficiency by reducing

performance time (eliminating the need for multiple copies)

(3RT183;4RT70). Also, it is more expensive to change over to

all local variables (4RT70). In this event, the presence of

global variables did not concern Dee because the source code

made extensive use of local variables and only retained those

common to all modules at the global level (3RT183-3RT184).

 Moreover, Dee disagreed with Base One's criticism that the

routines were written in C language rather than assembly

 34

language (3RT186-3RT187). He believed the use of C language

would not cause problematic delays or effect the results in any

way (3RT187). Also, despite Base One's assertion to the

contrary, he found a copyright notice in the first module which

he opened (4RT153).

 Dee also did not agree with Base One's criticism of the

Alcotest's lack of standards (3RT192-3RT193). In his opinion,

such standards usually referred to the design and documentation

of the code; they rarely addressed the tasks the code actually

performed (3RT193;4RT217-4RT218). Moreover, he objected to Base

One's reference to standards without citing specific instances

in the code where standards were violated (4RT93-4RT94;4RT96).

 Finally, Dee was "outraged" when he reviewed Appendix C in

Base One's report which purported to find "errors" in 19,000 of

the 45,000 lines of code (3RT188-3RT189). Wisniewski found

these errors using a pre-compiling syntax checking program

called Lint (3RT190). In Dee's view, Lint was a product of the

1970s and was not a commonly-used program today (4RT24;4RT206).

He believed that interactive development environments (IDEs)

replaced the need for Lint by keeping a programmer within the

parameters of the proper syntax during the coding process

(3RT190;4RT205-4RT206).

 35

 Dee objected to Base One's attempt to quantify the errors

(3RT189). For example, Lint generated approximately 7657 lines

of warnings based on its misunderstanding that the "U_Byte"

variable was undeclared or used incorrectly (3RT189). Dee later

explained these lines might have values which truncated the

lower digits and retained the higher values (4RT167-4RT168).

Also, Lint ignored the quality of the errors, and improperly

flagged "comments within comments" (3RT189-3RT190). Based on

these alleged errors, Dee believed that Lint did not understand

some of the specific code needed for embedded systems (4RT24).

He would not have used Lint to review the Alcotest's source code

(4RT48).

 Dee understood that the source code was written between

1993 and 1997 (4RT78). Although he only scanned the code, he

saw about three or four different writing styles (4RT97-4RT98).

He did not know if Draeger gave its programmers requirements

documents with instructions on how to code (4RT99;4RT180).

 Based on his review of the reports, the testimony, and his

own experience, Dee was of the opinion that SysTest performed an

in-depth review of the source code and produced a professional

report (3RT194-3RT195). He found that SysTest was able to

reverse engineer, conduct a "fairly good accounting" of the

system, and expose the "overflow" error not previously found

 36

through actual field usage of the instrument (3RT195). He also

supported SysTest's finding that there was no evidence of any

attempt to maliciously alter the code (4RT177). Dee, in the

overall, was completely unimpressed with Base One’s analysis

(3RT195).

 We find Dee an impressive witness, as we did at the initial

hearing. We give considerable weight to his opinion and find

that he was fair and even-handed in all respects.

4. Summary of Testimony of Defendants' Expert, John
Wisniewski: September 25, 26, October 9 and 10, 2007

 John Wisniewski has a Bachelor of Arts degree in computer

science from the State University of New York at Potsdam

(6RT197-6RT198). For the past thirty-one years, he has worked

as a computer professional primarily in the areas of programming

and software development (6RT177;6RT183;6RT202-6RT203;Wisniewski

report at 47).8 In June 1991, he became a free-lance,

independent contractor and established Winc Research which he

currently operates from his home in Lakeview Terrace, California

(6RT188;6RT222;7RT21;7RT37).

 Base One Technologies (Base One) retained Winc Research to

review the Alcotest's source code for obvious defects and

inconsistencies (7RT20;7RT34;7RT44). Base One is a "virtual"

8 See Report: Alcotest 7110 MK IIIC, by John J. Wisniewski, Base
One Technologies, undated (DR-30).

 37

consulting company with its main office in New Rochelle, New

York (6RT187;6RT190-6RT191;7RT37). Most of its personnel work

from their homes in different cities throughout the country

(6RT188). After writing his report with the assistance of a

translator in Germany, Wisniewksi sent his draft to Base One's

technical writer in Colorado for formatting and editing

(7RT37;7RT39-7RT40;8RT215).

 The defense offered Wisniewski as an expert in software and

hardware development, specifically C language, programming,

source code reviews, software troubleshooting, computer

interfacing, and embedded systems (7RT19). Based on

Wisniewski's education and experience, the court found he was

qualified to testify (7RT35).

 Wisniewksi maintained that it was time-prohibitive to

thoroughly test a complex computer program (7RT190). For that

reason, he relied on industry standards to test the reliability

of software (7RT190-7RT191). Various standards initially

governed how programmers wrote each individual line or segment

of code, but Wisniewski described "current standards" as more

akin to software development methodologies which applied to the

whole system (7RT100-7RT101;8RT216-8RT217). In his opinion,

these methodologies produced the most error-free and reliable

software (7RT101). They also made software easier to maintain,

 38

produced more robust overall systems, and allowed for testing of

all the critical paths (6RT196;7RT98;Wisniewski report at 3-4).

 Wisniewski recognized that private industry was slow to

adopt the new methods of producing software because they took

time to develop (7RT102-7RT103). He claimed, however, that

"standards" saved money in the long run (7RT102). For that

reason, he said the United States military, some federal

agencies, and the European community had developed their own

methodologies (7RT103).

 Wisniewski identified five widely used software development

methodologies: (1) IEC 6158 Functional Safety International

Standard, regarding safety of electrical devices and software;

(2) ISO 9001 international standard for requirements, regarding

the software life cycle; (3) IEC 62304, regarding Federal Drug

Administration (FDA) standards for software in medical devices;

(4) DOD-178B, regarding Federal Aviation Administration (FAA)

devices used on commercial and private aircraft; and (5) DOD-

STD-2167 and MIL-STD-498 regarding software used by the military

and some government law enforcement agencies (7RT99;7RT191-

7RT196;Wisniewski report at 34). Wisniewski recommended that

the State of New Jersey refuse to accept any device unless the

manufacturer followed one of these five methodologies or

developed one of its own (8RT131-8RT132;8RT217;9RT86;9RT125).

 39

 According to Wisniewski, the Alcotest's source code did not

adhere to any software development methodology (7RT104-7RT105).

On cross-examination, he conceded that the code followed a

known, function-oriented methodology, but claimed that

methodology applied only to software, not the "whole system"

(8RT218;8RT224-8RT225). He was unaware of the national breath

testing standards promulgated by NHTSA, but understood they did

not apply to software (8RT218-8RT219).

 Wisniewski described early software development as "bottom-

up programming" which focused on details rather than the overall

picture (7RT181). Eventually, the industry adopted "structured

programming" or the "top-down" approach which started at the

highest level and then added more complicated and lower-level

functions (7RT180-7RT181). In Wisniewski's view, the Alcotest

used a "little bit" of structured programming with a lot of low-

level detail (7RT181;Wisniewski report at 33). However, because

Draeger did not employ any software development methodology, it

was Wisniewski's opinion that the Alcotest's source code was not

reliable (7RT193;7RT201).

 Wisniewski described source code as human-readable

statements which were written in programming language such as

assembly or C (7RT63-7RT64;7RT80;DR-15). In C language, a

single line of English-looking code could have multiple

 40

instructions (7RT79). In assembly language, however, each

instruction was assigned a word called an operation code or

opcode which generated one instruction for every line (7RT79).

According to Wisniewski, the Alcotest's source code was written

in C and assembly languages (7RT159;9RT79-9RT80).

 The purpose of source code was to correctly implement the

algorithms or mathematical formulas (7RT67). A compiler

translated the source code into object code, which consisted of

a binary set of machine-readable instructions consisting of ones

and zeros (7RT64;DR-15). The microprocessor executed the

instructions (7RT79).

 When Wisniewski examined the Alcotest's source code, he was

unable to distinguish between its core and customized sections

(8RT17-8RT18). He believed that programmers should be able to

touch the core software in order to learn more about it (8RT17-

8RT19;9RT44;9RT46). If Draeger wanted to protect the core,

however, he recommended taking the core routines out of the

regular code and converting them into libraries of object

modules (8RT176-8RT177). The programmers would then get a

reference with the library routines, and they would be protected

from change (8RT177).

 Wisniewski determined that at least three programmers

worked on the source code based on stylistic variations

 41

(7RT178-7RT179;8RT103-8RT105). Although the code was created

between 1993 and 1997, Wisniewski said it was written in a style

reminiscent of the 1970s and 1980s (7RT56;7RT179). He did not

view that style observation as a criticism, and acknowledged

that Draeger had done a "great job" of adhering to an older

style methodology (7RT56-7RT57;7RT193). He further acknowledged

that it was not necessary to always adopt the newest technology,

and that many people preferred to stay with the familiar

(7RT180).

 Wisniewski used a variety of tools to review and analyze

the Alcotest's source code (7RT158-7RT161). For example, he

used the "Understand C Code Analyzer" to find fifty-one uncalled

functions, which were either empty pending future release,

temporarily disabled, or full but forgotten (7RT161-

7RT162;8RT30;8RT167). In Wisniewski's view, these uncalled

functions were confusing and untidy (7RT163). Given the

possibility that they could confuse future programmers or be

executed accidentally, Wisniewski said they should be purged

from the executable code (7RT163-7RT165;7RT167). He also

observed that there were 475 active functions in ninety-five

source files with 26.5% in seven files (8RT175;8RT178). He

preferred one function per file (8RT175).

 42

 Wisniewski selected Lint to analyze the source code's C

language syntax, data initialization, and data management

(7RT158;8RT19). Specifically, he used a cost-free program tool

derived from Lint called Splint, version 3.1.2, which raised

warnings or flags (8RT235;9RT6-9RT7;9RT41). Wisniewski called

these warnings "defects" because they required action whether

they were serious or simply flaws (8RT26;8RT235). Splint

allowed Wisniewski to customize the warning messages by

selecting which ones to show (9RT7). He selected the option

which displayed all of them (8RT8-8RT9). Wisniewski used Lint

to check the source code because it looked across the boundaries

of several modules whereas IDEs looked for errors one module at

a time (7RT154-7RT155;9RT126).

 Wisniewski recognized that Lint was quite verbose because

it tended to produce a number of defects including repetitive

examples of the same coding style (8RT19-8RT21;9RT39). Despite

its "voluminous" output, he maintained that disciplined coders

would want to know about the defects and remove them to avoid

confusion or any chance the code might not work correctly

(8RT19-8RT21). Although the presence of these defects did not

prove the software program would fail to execute, they indicated

a disregard for use of industry coding standards (Wisniewski

report at 37).

 43

 Lint found approximately 19,500 defects in the Alcotest's

source code, which Wisniewski described as consisting of 35,000

lines after eliminating "comments and other things like that"

and 3200 decision paths (8RT29;8RT180;8RT211). To insure the

source code's reliability, Wisniewski said every defect should

be removed (8RT23-8RT24). He would undertake an aggressive,

ongoing campaign to find and dispose of them as part of what he

called the software life cycle (8RT27;8RT127-8RT128;9RT123-

9RT124). Wisniewski estimated that it would take about one year

to fix all the "defects" in the Alcotest's source code (8RT126).

Wisniewksi estimated there were defects in three out of

every five lines of the code, ranging from substantive problems

to variations in programmer style and organization (8RT180).

Some of the defects appeared numerous times, like print

interrupts which were flagged about 2000 times (8RT64). The

Lint program did not categorize the warnings or flags, nor did

it quantify any of them (9RT16;9RT19). Wisniewski did not

attempt to fix any of the defects identified in the source code

nor did he check to see if they applied to functions actually

used in New Jersey (9RT29-9RT30;9RT70).

 Some defects simply reflected poor coding practices, in his

opinion, such as using a variable as a character in one place

and a number in another (8RT31-8RT32). Another example involved

 44

mismatched function argument types where the code expected to

see a variable with a plus or minus value, but received only a

positive variable (8RT43-8RT44).9 While not as serious as other

defects, Wisniewski said their presence could cause unintended

consequences in other parts of the program (8RT32-8RT33;8RT44-

8RT45).

 Other defects flagged by Lint included the use of a local

variable as a global and vice versa, and the assignment of the

same name to local and global variables (8RT48-8RT49).

Wisniewski described these cases as confusing and inconsistent,

and expressed concern that they might influence some other

operation in the program such as calibration (8RT49-8RT50). He

acknowledged, however, that identically named local and global

variables would not confuse the compiler because the local would

take precedence over the global declaration (9RT37-9RT38).

 Wisniewski also found such defects as: mismatched types

(where the computer assigned integers to floating-point

variables); memory leaks (where unused memory was taken from the

system and not returned); variables assigned different types

depending on conditions (where the types of values assigned were

inconsistent); and arrays initialized with too many variables

9 Wisniewski defined an argument as "something passed to a
function to allow it to take different paths or make different
decisions" (8RT64).

 45

(where there were too many variables to fit into the declared

space) (8RT50-8RT59).10 Wisniewski believed these defects could

ultimately effect some calculation which, in turn, could effect

the breath alcohol reading (8RT58-8RT59). However, he was

unable to determine, by desk checking alone, if these defects

had corrupted any critical values (8RT74). He would need an

Alcotest instrument and an emulator to "run" the code to see how

it performs (8RT74-8RT75). In any event, he said many of the

defects were simply bad housekeeping and extraneous, and should

be removed (8RT73-8RT74).

 Wisniewski also testified about inconsistencies between the

code and corresponding comments (8RT118). For example, he

found a comment in the code stating that a conversion to "%BAC"

needed to be performed, but this was not done (8RT116-

8RT117;Wisniewski report at 17). He also found comments which

said values should be averaged when, in fact, he claimed the

source code performed weighted averages or successive averaging

routines (8RT118). Wisniewski said such comments could affect

the breath test result if they were unintentionally executed;

otherwise, they reflected a sloppy coding style (9RT18). He

agreed, however, that comments were not compiled, never reached

10 For a discussion of errors detected by Lint, see 8RT43-
8RT98;Wisniewski report at 37-43.

 46

the object code, and did not effect the performance of the

Alcotest (9RT18). Therefore, they would not affect the

Alcotest's performance if placed correctly within the source

code (9RT18).

 Of the many defects identified by Lint, Wisniewski selected

nine with the greatest impact on the Alcotest's test results:

(1) the software would not pass industry standards for

development and testing; (2) the lack of use of industry coding

standards prevented the testing of all critical paths in the

software; (3) the catastrophic error detection was disabled,

making it difficult to detect if the software was executing

indefinite branching or invalid code; (4) the implemented design

lacked positive feedback; (5) the diagnostic routines were

performed during data measurement cycles, allowing the

substitution of arbitrary data values when a routine failed; (6)

the air flow readings were adjusted at the beginning of the

measurement, causing defective measurements when the baseline

value was corrupted; (7) the error detection logic failed to

flag an error unless it occurred thirty-two times; (8) the heavy

use of global variables failed to insulate software modules; and

(9) the software instructions were out-of-phase with the

continuously operating timer interrupt routine, which went off

 47

every 8.192 milliseconds (8RT110-8RT116;8RT120-8RT125;8RT134-

8RT141;8RT152-8RT166;Wisniewski report at 3-6).

 At this remand hearing, however, Wisniewski was unable to

find an illustration of diagnostics adjust/substitute data

readings (8RT137;9RT66-9RT67). He also admitted on cross-

examination that the use of global variables was a tradeoff,

stating that fewer globals would result in more functions with

arguments passed but more variables protected (9RT76-9RT78). He

further admitted that time constraints prevented him from

determining if a global variable was misused and could actually

change the result on an AIR (9RT78). Indeed, he was unable to

identify anything in the code that posed a real problem that

would effect a result on the AIR (9RT86-9RT87).

 Wisniewksi also raised an issue regarding the independence

of the IR and EC measurements (8RT182-8RT198). He found a

section in the code where the IR reading mathematically modified

the EC reading (8RT183-8RT184;8RT191). That section could be

called or activated from seven different paths in the code

(8RT190). Thus, under certain conditions, the code would take

the results of the calculations under the EC curve and divide

them by the IR average (8RT187;8RT191). In Wisniewski's

opinion, the Alcotest's source code should not be accepted as

scientifically reliable in his field (8RT199).

 48

 We were not particularly impressed with Wisniewski's

testimony. He was very negative and deconstructive. He said

many things were wrong but did not convince us that these

negatives made the Alcotest unreliable. We doubt that he was as

experienced as he portrayed.

5. Summary of Testimony of Defendants' Expert, Thomas E.
Workman, Jr.: October 10 and 11, 2007

 Thomas E. Workman, Jr. has Bachelor and Master of Science

degrees in electrical engineering from the University of Texas

at Austin (1970 and 1974), and a JD degree with a high

technology law concentration from Suffolk University Law School

in Boston, Massachusetts (1997) (9RT151;9RT176). He is a

licensed patent attorney and admitted to practice before the

U.S. Patent Office (9RT151).

 Workman was an engineer for over twenty years with various

technology-based companies including Thinking Machines

Corporation, Digital Equipment, Hewlett-Packard, Xerox

Corporation, Austron Corporation, and Texas Instruments (9RT152-

9RT155). He also worked as an independent consultant on

projects which developed embedded systems primarily for law

enforcement and communication customs software for remote job

emulators (9RT155). Workman has experience in software

engineering, quality assurance, systems verification, and

standards (9RT163-9RT164;9RT168-9RT172).

 49

 For example, at Hewlett-Packard, Workman was co-chair of a

working group for the Institute of Electrical and Electronic

Engineers (IEEE) which promulgated a standard for measuring

software reliability (9RT170;DR-15). That standard, IEEE 982.1,

was voluntary and recommended a classification scheme for

severity and class of defect (10RT199). At a presentation to

one of the IEEE standards boards, Workman observed that unless

some step was taken to improve the reliability of software, the

number of problems would double every two years as a result of

the computer operating twice as fast (9RT174-9RT175). His

observation became codified within the IEEE as Workman's law of

software reliability (9RT175).

 Workman currently practices law, provides expert testimony,

and operates a computer forensic business (9RT183;10RT206). He

primarily works as a court-appointed criminal defense attorney

in misdemeanor court in Massachusetts for clients charged with

operating-under-the-influence (OUI), assault and batteries, and

other misdemeanors (9RT183). In his "spare time," he performs

as a classical singer at such venues as Carnegie Hall

(9RT185;10RT206).

 Workman has qualified as an expert in multiple subject

areas in fifteen to twenty cases, two on behalf of the

prosecution (10RT201-10RT202). He has testified as an expert on

 50

source code for breath testing instruments in Arizona and

Georgia, and prepared for a case in New Hampshire (9RT180-

9RT181). He is scheduled to testify in Tennessee, South

Carolina, Georgia, Arizona and California (9RT181). Except for

here in New Jersey, most of his other testimony involved issues

relating to the production of source code for discovery

(10RT214). In Arizona and Florida, he worked on cases where the

court ordered CMI, Inc. to produce the source code for

Intoxilyzers 5000 and 8000 (9RT204).

 The defense here offered Workman as an expert in source

code review and the application of standards (9RT186). The

court found him qualified to offer testimony in engineering by

education and in the other areas by work experience (9RT186-

9RT187).

 Based on his education, background, experience and

understanding of the Alcotest from exhibits introduced at the

remand hearing, Workman offered the opinion that the Alcotest

was not a reliable instrument on human subjects (9RT187). He

believed the source code's complexity and design made it

impossible to test (9RT195-9RT196). However, because he would

not enter into a non-disclosure agreement with Draeger, Workman

never saw the source code except for several snippets introduced

in evidence at this remand hearing (10RT59;10RT183;10RT198).

 51

 Both SysTest and Base One identified the software's

complexity as a major issue (9RT195). Whereas Base One

concluded that the software was too complex to test, SysTest

relied on the cyclomatic complexity metric developed by Thomas

McCabe in 1976 to measure the number of potential paths through

the code (9RT195-9RT196;9RT199-9RT200;9RT211). While acknowledging that

McCabe wrote in 1976 that a cyclomatic complexity of ten was not

a magical upper limit, Workman maintained that modules with

excessive McCabe metric scores were overly complex (9RT196-

9RT197;9RT199-9RT201;10RT187;Workman supplemental report at 4).11

 Workman also described another software metric called the

Halstead Metric, which measured a routine's data complexity

(9RT200). This metric measured the number of operands (things

that are operated on) and operators (how the operands or data

are manipulated) to provide a single number (9RT200;DR-15).

 In Workman's view, the Alcotest's software was "far too

complex" to test (9RT200-9RT201). Therefore, its reliability

could only be determined retrospectively based on the

occurrences of failures (9RT201). He said the problem could be

corrected by re-partitioning the routines so there was a more

11 See Supplemental Report by Thomas E. Workman, Jr., October 4,
2007 (DR-31).

 52

manageable number of paths through particular functions

(9RT211).

 Workman acknowledged that it was impossible to write

perfect source code (9RT201;10RT215). First, human beings, by

nature, were fallible (9RT201). Second, specifications changed

over time in response to new regulations and legislation

(9RT201). Third, codes like the Alcotest's contained

trillions of paths which made it impossible to find and fix all

the errors (10RT33). Indeed, Workman estimated it would require

all of mankind for the rest of time to test all the paths in the

Alcotest's source code (10RT33). Nonetheless, Workman thought

it was possible to achieve 99.98% reliability by applying

standards to software development (9RT202-9RT203;10RT33-10RT34).

He did not know if any breath testing instruments on the market

had achieved that level of reliability (9RT204).

 To make the Alcotest reliable, Draeger would need to

develop standards that would dictate the complexity of the

modules and discourage the use of global variables (10RT33-

10RT34). Such standards also would establish testing processes

and procedures, which Workman believed would have detected the

buffer overflow problem (10RT34).

 Programmers make mistakes all the time (10RT34). For that

reason, companies relied on their quality assurance

 53

organizations to test source codes and determine if they adhered

to standards (10RT34-10RT35). While he considered Shaffer a

good programmer, Workman saw no evidence that Shaffer had the

support of such an organization within Draeger to review and

test the code (10RT34).

 Workman defined source code review as an inspection method

for identifying and documenting problems (9RT209-9RT211).

Unlike desk checking, source code review was a more rigorous

process typically performed by someone other than the author

(9RT210). To review code, Workman would: (1) use a static

tool, like Lint, to find source code modules with particular

problems that needed to be investigated; (2) evaluate the build

process to determine how the code was assembled and identify

what source code went into the modules; and (3) methodically

test the sections of code which were most likely to have

problems and yield useful results (9RT213;9RT218;10RT38-10RT39).

For example, Wisniewski looked at the interrupt handlers, timing

routines, and the algorithms purporting to average the samples,

and found significant problems (10RT39). Workman described this

type of review as "static code analysis" because it did not

involve the execution of the code (9RT218).

 Workman described Lint as a generic term for a class of

tools that performed static code analysis (9RT220-9RT221). Lint

 54

is designed to find problems in source code; IDEs facilitated

the writing and testing of code for a particular environment by

providing tools such as a programming editor, a compiler, a link

editor, and often a debugger (9RT223). Most Lint programs were

shareware, meaning they were cost-free, while others had fairly

modest fees (9RT222). Splint was a variant of Lint that focused

primarily on security issues relating to coding errors (9RT222).

Lint and Splint functioned on C language source code (9RT222).

 Workman explained that people committed errors in writing

code by acts of commission or omission (9RT229). Errors

resulted in defects which existed in the lines of source code

(9RT229). When the microprocessor executed a defect in the

code, a fault occurred (9RT230-9RT231). A fault meant that the

computer was doing something unintended or wrong, which could

result in a failure to perform the desired specification

(9RT231;9RT235-9RT236). Because the software development

process was imperfect, there were always some defects and

failures (10RT7).

 Workman reviewed the warnings or errors flagged by Lint on

the Alcotest's source code (9RT224-9RT225). Among other things,

Lint found prolific "u_byte" errors, which meant that a byte

variable was being loaded with a number too large to fit within

eight bits (10RT59-10RT60). For example, in base two, the

 55

number of values that could fit into a byte was 255 or 2 to the

eighth minus one which accommodated for zero (10RT60-10RT61).

When too much data was assigned to a byte, Lint raised a warning

because of the risk of losing data and causing a wrong reading

(10RT63-10RT65).

 Lint also found errors involving mismatched functions

against type, meaning a function was expecting a variable of one

type and was passed a variable of a different type (10RT66). In

Workman's opinion, such errors might produce totally wrong

results (10RT67-10RT68). He also agreed with Base One's finding

that the source code had timing problems, explaining the

difficulties arose from the use of two different clocks within

the instrument plus a realtime clock which kept track of date

and time (10RT88). As an example, Workman mentioned that

Draeger did not add a new daylight savings variable in its code

to anticipate the recent legislative change (10RT88-10RT91).

 He further agreed with Base One's finding that the lack of

positive feedback in the hardware did not give the source code

the proper tools to do its job successfully, citing the

inability to confirm that the pump worked properly (10RT98-

10RT99). In Workman’s view, the absence of positive feedback

made it impossible to demonstrate the Alcotest's reliability

(10RT99-10RT100). He also considered the notion of ignoring

 56

thirty-one consecutive errors before reporting an error message

as "junk science" (10RT130).

 Workman recognized that there was an error re-insertion

rate in the industry between twenty to seventy percent, but

estimated it was on the high end for the Alcotest because of its

lack of use of standards (10RT96). There also was a greater

probability of creating new problems given the complexity of the

source code (10RT97-10RT98). He cited the case where Draeger

added a new capability to find the minimum value of six breath

samples and inadvertently created the buffer overflow problem

(10RT95;DR-4).

 Workman believed the most significant problem uncovered by

Lint was the Alcotest's averaging routine (10RT69-10RT70).

Instead of computing a simple average by adding together a set

of numbers and dividing by the number in the distribution, a

weighted average took into account the number of times each

value was present (10RT74;10RT80;DR-15). While Draeger claimed

to average the data points from the continuum of IR measurements

of the alcohol content in human breath, it actually averaged the

last measurement along the continuum with the sum of the three

earlier measurements (10RT71-10RT74). By minimizing the earlier

values (1/6 each) and giving half the weight to the final value,

Workman said the formula was scientifically unreliable as an

 57

average or weighted average (10RT77;10RT83;10RT85-

10RT87;10RT121-10RT122;10RT173).

 While acknowledging that the final point was a valid

reading, Workman maintained it should have no more weight than

the earlier values (10RT177). He recognized, however, other

instances where later values were given greater weight because

they were more important, referring to the Bayesian formula used

to predict the future based on past events (10RT159-10RT160).

 Workman also agreed with Base One's finding that the EC and

IR sensors did not operate independently as represented by

Draeger (10RT129). He explained that fuel cells were very

common devices which deteriorated over time until at some point

they ceased to function (10RT142;10RT144). He described this

process as a function of time and the fuel cell's use (10RT145).

As fuel cells drifted, they did not give the same output, just

as a battery flashlight becomes weaker with time (10RT142).

 When the Alcotest's fuel cell drifted out of tolerance, the

instrument used an IR value to compute an electrochemical result

(10RT132-10RT133;10RT136;DR-14). Workman believed that this

adjustment was made in the first and last control tests based on

Wisniewski's finding that it was called from seven different

places within the code (10RT141). Even if the adjustment was

made only in the first control test, it would affect everything

 58

that followed it because the adjusted EC was used in the ambient

air blanks and succeeding breath tests (10RT149). Workman could

not find any warning about fuel cell drift in Draeger's operator

manual (10RT144;10RT154). He would "fix" the problem by

stopping the test, shutting the machine down, and putting out a

message that the fuel cell had drifted out of tolerance and

required replacement (10RT144-10RT145).

 Although the probability that any one problem would result

in a failed AIR was small, the large number of warnings

identified by Lint increased the likelihood of such an outcome

(9RT224-9RT225). Workman raised the probability that an error

could incorrectly report a breath test as too high or low, or a

sample as insufficient (9RT225). It also could incorrectly find

a third test was not necessary or result in global variables

being overwritten so that AIRs were printed without such

information as the expiration date or solution control lot as in

the Longport example (9RT225-9RT226;10RT102;AB-2). Moreover, an

AIR could appear valid on its face, when it really was invalid

(10RT152).

 For example, Workman testified about a series of AIRs from

the East Brunswick, Milltown, and South River Police Departments

 59

(10RT9-10RT11;D-129).12 All three tests were administered by the

same officer on May 15, 2006, on three different instruments

(10RT14;10RT17-10RT18). The East Brunswick and Milltown readings were

taken at 4:03 a.m. and 4:36 a.m., and both results were zero

(10RT13-10RT14). The third test was given in South River, at

5:14 a.m., with a reading of .14 BAC (10RT14-10RT15). Workman

believed a software defect caused the underreporting on the two

AIRs (10RT15). While the problem could be hardware-related, he

believed the coincidence had to be very high for hardware to

fail in exactly the same way in two different instruments

(10RT42-10RT43). While he acknowledged the problem also could

be caused by operator error, Workman posited that even if there

was a sucking-back problem, the software should have detected it

and produced an error message (10RT44).13

 Instead of Lint, Workman observed that SysTest relied on a

different tool called Fortify to look for security defects

(10RT39-10RT40). Fortify was designed to look for malware or

viruses that might exist in the software (10RT40). Workman

12 Exhibits with a "D" designation refer to exhibits marked into
evidence by the defense at the initial hearing before the
Special Master in this matter.

13 State's counsel represented that at the initial hearing,
Sergeant Kevin Flanagan said the underreporting was caused by
the subject who was sucking air into the instrument (10RT29-
10RT30).

 60

thought this was an inappropriate tool because the user did not

touch the interface to the software (10RT40). Both SysTest and

Base One used another tool called Understand C++, which provided

information about the complexity of routines such as the number

of global variables and uncalled modules (10RT40). Workman

thought this tool was appropriate (10RT40).

 Unlike other computer-dependent industries, Workman

expressed concern that there was no easy access to Draeger when

problems occurred in the field (10RT20-10RT21). There was no

button on the Alcotest which could be pressed to alert the

manufacturer of a problem and no evidence of data logs (10RT21).

He acknowledged on cross-examination, however, that he did not

review the actual code and seemed unaware of the data log

functions in the instrument, as related by Shaffer (10RT183-

10RT184).

Moreover, New Jersey did not maintain a centralized data

base in contrast to Alabama, which logged over 200,000 breath

tests, or Massachusetts (10RT27-10RT28). Workman observed that

the forensic breath testing field did not encourage the

reporting of problems, that state organizations had limited

skills in software and computer science, and that police

officers often had even fewer skills (10RT23-10RT25). He also

was highly critical of New Jersey's operation (10RT24-10RT25).

 61

 Workman found nothing really wrong with Wisniewski's

testimony, although he might have done things a "little bit"

differently (10RT200). He said that Wisniewski delved

significantly deeper into the code than Geller (10RT224-

10RT225). While both experts identified the code's use of

global variables and its excessive complexity, he thought

Wisniewski was the only one who properly testified about their

consequences (10RT225). Because Wisniewski concluded that the

Alcotest was not scientifically reliable, he could not

contemplate any method to distinguish between correct and

incorrect test results in the pending cases (10RT147).

 The court heard Workman's testimony under R. 1:7-3, which

provides in relevant part that in actions tried without a jury,

a court shall permit the evidence to be taken down by a court

reporter in full unless it was not admissible on any ground, a

valid claim of privilege was asserted or the interest of justice

required otherwise. This court found that Workman was qualified

to voice his opinion on technical, computer and legal matters.

The weight was for the court.

 We did not find Workman's testimony persuasive on the point

of Alcotest's unsuitability. He did not convince us that its

hardware or software was inappropriate. His suggestion that

the EC cell should be replaced on an indication of depletion may

 62

have some merit and could be considered by the Court as a

correction of the current practice and program.

6. Summary of Testimony of Court's Witness, Brian
Shaffer: September 24 and 25, 2007, and October 11,
2007

 Brian Shaffer received a Bachelor of Science degree in

electrical engineering in 1992 from the University of Pittsburgh

(5RT5). After working nine years in the semiconductor industry

as a product test engineer, he spent one year as a design

engineer for an electronics company which served the hobby

industry (5RT5). In July 2003 Shaffer joined Draeger in

Durango, Colorado as a software engineer (5RT5;5RT56;5RT38). He

currently works with evidential table-top instruments, primarily

the Alcotest 7110 and 9510 (5RT38;5RT124).

 Shaffer has written source code for Alcotest instruments

used in California, Massachusetts, Alabama, and New Jersey

(6RT32-6RT33). In New Jersey, he wrote the post-Foley changes

into the code which appeared in version NJ 3.11 (5RT5-5RT6).

Norbert Schwarz is his primary Draeger colleague in Luebeck,

Germany (5RT19). Shaffer prepared no written report, as he was

called by the court as a witness (5RT4;5RT6). Although he was a

fact witness, the court also found him qualified as an expert on

source code writing (5RT53).

 63

 The Alcotest's source code consists of core routines and

customized tasks designed around them (5RT10-5RT11;5RT175-

5RT176). A compiler translates the source code into

instructions which the microprocessor follows to complete the

sequence and print a result (5RT8).14 The software, however,

cannot function without the critical hardware (5RT11).

 The core routines in the Alcotest relate directly to the

measurement of alcohol (5RT178-5RT179). Because these

analytical algorithms were tested many times in different

applications around the world, Shaffer avoided altering them

(5RT18-5RT19;5RT93). The instrument also was tested by the

National Highway Traffic Safety Administration (NHTSA), which

would require re-testing if any changes were made to the core

routines (5RT18-5RT19;5RT93-5RT95). While the code did not

delineate or "wall-off" these sections of code, Shaffer was

alerted to their presence by comments from previous developers,

and discussions with Ryser and Shaffer's own engineering

supervisor (5RT93-5RT94). Shaffer acknowledged it would be

easier to find the core routines if they were documented in the

code, but did not believe this was necessary (6RT28-6RT29).

14 The Alcotest uses three microprocessor chips: Motorola;
Toshiba; and a low-voltage version of the Motorola device
(6RT136-6RT137).

 64

These routines were the same in instruments used in New Jersey,

Alabama, Massachusetts, and California (6RT41).

 Shaffer described the Alcotest's source code as complex

with various styles of syntax (5RT148;6RT28). While a highly

organized and consistently structured presentation would make

the source code more readable, Shaffer did not believe this

would make the code more understandable (6RT28-6RT30).

 The source code was written in assembly and C program

languages (5RT36). The core algorithms were written in Germany,

and the customized ones here in the States (5RT93;5RT98).

Shaffer customized various tasks for New Jersey including

display prompts, external printouts, removal of internal

printout functions, modifications of tolerance agreements, test

sequence changes, and data memory (5RT179-5RT180).

 In Shaffer's opinion, there was nothing proprietary about a

very common algorithm (5RT13). However, software developers and

scientists worked very hard and invested a lot of time and money

to develop routines to create breath test measurements (5RT13-

5RT14). If the Alcotest's source code was openly available,

competitors could use Draeger's hardware and software to create

"knock-offs" (5RT14). They also could use Draeger's technology

to create their own products (5RT14). For example, anyone who

marketed products with fuel cells might be interested in the way

 65

that Draeger captured data from the Alcotest's electrochemical

sensor (6RT133). Shaffer was unaware of any companies that

openly published their source codes or of any instance where he

personally shared code that he wrote (5RT14-5RT15).

 After writing source code, Shaffer performed his own static

code review or "desk checking" (5RT192). He also conducted

"black-box testing with white-box knowledge" by exercising

certain logical paths through the code to confirm that these

paths worked as he intended (5RT192-5RT193). A technical writer

then conducted black-box testing to find out how the test

sequence performed and if it met the customer's requirements,

and documented the procedures (5RT193-5RT194;5RT197). The

service department next performed black-box testing to determine

if the code supported its service capabilities (5RT194;5RT197).

Finally, the customer performed user acceptance verification

testing (5RT197).

 Draeger did not have a dedicated quality assurance person

or anyone who functioned in that role with respect to software

(6RT38). Shaffer admitted that he would have a higher degree of

certainty about the source code if another person participated

in the code review process (5RT195-5RT196).

 Shaffer was unaware of any single industry standard for

software development (5RT15-5RT16). Instead, he referred to

 66

"industry standards" as collections of techniques and common-

sense wisdom which had proved effective over time (5RT16).

During his career, Shaffer collected his own set of development

standards, albeit unwritten (5RT16;5RT144-5RT145). He was not

familiar with the ISO 9000 standards for software (6RT38).

 Shaffer did not agree with Base One's assertion that the

failure to use industry coding standards prevented the testing

of critical paths in the Alcotest's software including 3200

lines of code designed to make decisions (5RT17-5RT20). Because

the Alcotest in the United States was highly configured to meet

the requirements of specific applications, all of the 3200 lines

of decision code as calculated by Base One were not

relevant (5RT18;6RT152-6RT153). Shaffer also said there were by

design many unused or uncalled modules or sections of code

(5RT17).

 Shaffer, however, agreed with Base One’s finding that the

source code failed to detect catastrophic errors (5RT20-5RT23).

He explained that when the microprocessor encountered a command

or a memory location that it did not recognize, such as when an

instruction in the stack or temporary memory area became

corrupted, the microprocessor would lose its place in the script

and jump to another section of code (5RT20;5RT150;5RT216;6RT44-

6RT45). When the microprocessor attempted to execute the code

 67

at the new location, it would become confused and fail to

respond appropriately (5RT22;5RT216-5RT217).

Shaffer used the term "illegal opcode trap" to describe

this scenario and considered it highly likely that the hardware

would "lock up" or freeze so that it would be impossible to

finish a breath testing sequence (5RT21-5RT22;5RT217-

5RT218;6RT37). Because the operator would immediately become

aware of the situation, there would be no risk to the subject of

a false reading (5RT22-5RT23). Nonetheless, Shaffer recommended

resetting the microprocessor whenever the instrument detected an

illegal opcode trap by clearing the memory and starting anew as

if the instrument had been turned off (5RT20-5RT21;5RT215;6RT36-

6RT37;6RT98). Based on Shaffer's discussions with his

engineering colleagues in Germany, Draeger already has begun to

implement this reset feature with its customers in the United

States (6RT36;6RT40).

Shaffer disputed Base One's finding that the implemented

design lacked positive feedback (5RT23). He explained that

there was a direct or indirect way of monitoring the functioning

of every circuit, sensor or electrochemical device in the

Alcotest (5RT23-5RT24). For example, a problem with the IR

detector on either end of the cuvette would be directly

observable because during the operational cycle every 8.192

 68

milliseconds, the measurements would immediately drop below the

minimum threshold and the instrument would flag a hardware error

(5RT24). Likewise, if the pump or the solenoids were not in the

proper position, the problem would be indirectly observable

because air would not flow past the sensor at the appropriate

times (5RT25).

 Shaffer was uncertain about Base One's findings on

diagnostic adjustments and substitute data readings (5RT26-

5RT27). He explained that the Alcotest performed diagnostic

checks every 8.192 milliseconds or 122 times a second, including

when a subject was blowing and results were analyzed

(5RT26;5RT82-5RT83;5RT141). Unlike other customers, New Jersey

did not ask Draeger to take "diagnostic snapshots" and store

them in the instrument's memory as part of the data log (5RT26).

Nonetheless, if a diagnostic routine failed in New Jersey's

firmware version, the instrument would generate a hardware error

which would halt its operation and make further tests impossible

(5RT27). Contrary to Base One's assertion, Shaffer never saw an

instance where a diagnostic routine failed and the Alcotest

substituted "canned" or arbitrary data values (5RT27).

 Shaffer also disagreed with Base One's criticism about flow

measurement (5RT27-5RT29). At the beginning of the power-on

cycle which started a breath test measurement, the Alcotest

 69

assumed that the airflow was zero without conducting a

"reasonableness check" (5RT27-5RT28). This "zeroing" of the

instrument, however, was offset by many real-time checks which

made certain that the instrument was working within its

prescribed ranges (5RT28-5RT29).

 Shaffer said it was common practice in electrical

engineering to ignore error messages unless they occurred a

large number of consecutive times (5RT30-5RT31). Indeed, he

mentioned several advantages of the Alcotest's requirement that

measurement errors had to occur thirty-two consecutive times

before they were reported (5RT30-5RT31). Shaffer explained that

all sensors had a natural range of values and that it would be

surprising for them to rely on only one decision point (5RT31).

The use of thirty-two events also allowed Draeger to set tighter

tolerance ranges to avoid falsely triggering errors (5RT31-

5RT32). For example, this meant that if a subject blew into a

breath hose before the operator pressed the button to start the

test, the instrument would not flag "blowing not allowed" if the

subject blew for less than one-quarter of a second (thirty-two

times 8.192 milliseconds), but would display the error message

if the subject blew one-quarter second or longer (5RT30-5RT31).

 Shaffer estimated that the Alcotest's source code contained

approximately 200 global variables and 1500 local variables,

 70

which he described as a lot of variables in general (5RT32). He

described the use of global variables as a tradeoff (5RT33). On

the downside, they placed an additional burden on programmers to

exercise caution when adjusting the code to avoid unintended

consequences such as overriding local variables or assigning to

a new module a name already used by a global variable

(5RT33;6RT14). On the upside, global variables were easily

accessible in all modules of the program, and contained

information for the use of such things as calibration which

Shaffer wanted the instrument to remember after it was powered

off (5RT33-5RT34). Their use also resulted in far less

complexity and overhead, and made the code easier to design

(5RT117).

 Shaffer believed the advantages of global variables

outweighed the risks (5RT33). Moreover, to reduce their number,

he would have to add more code and functions which, in turn,

would create higher complexity (6RT135). He also would have to

touch more portions of the code than otherwise necessary

(6RT135). Shaffer emphasized that the decision to use global

variables was made in the design process and that he did not

consider their presence as a liability for the product (5RT34).

 Shaffer also took exception with Base One's identification

of timing problems (5RT34-5RT36). Because the Alcotest had a

 71

separate real-time chip on the motherboard that could be

accessed for any evidential time stamp, he considered the clock

free-running and independent of the microprocessor (5RT34). He

also explained that the clock was used for administrative

functions, and was not absolute (5RT34-5RT35). He specifically

objected to the characterization of the external interrupt

routines as very lengthy, stating they handled many functions by

design, and to the representation that they were written

exclusively in C language when, in fact, portions were written

in assembly language (5RT36).

 Shaffer agreed that headers could be used to identify the

last time a section of code was modified and the name of the

programmer who made the change (5RT119). However, he did not

consider them a priority because he usually worked alone or as

part of a very small engineering team (5RT120). If he needed to

determine when a module was changed, he simply would compare

previous versions of the code using other tools (5RT120;5RT190).

For example, he used "diff programs" which highlighted the lines

of code that were changed and the way they were changed,

allowing him to interpolate file creation dates (6RT22). If he

worked with a larger engineering team, Shaffer acknowledged that

the header comments would have far more value (5RT120).

 72

 Shaffer defended the Alcotest's use of weighted averages,

stating it was absolutely appropriate to assign the greatest

weight to the most recent value (taken from the sample with the

deepest lung air) for the purpose of making a very accurate

breath test measurement (5RT136-5RT138;6RT144-6RT147;10RT229).

He explained that individual samples of breath from the IR

measurement were taken every 8.192 milliseconds but that the

weighted average routine only considered the points derived

from them every .25 seconds (10RT228). By relying on samples

taken at .25-second intervals, the weighted average was actually

less than the value of the last reading (10RT227-10RT230).

 Likewise, Shaffer took issue with Base One's finding that

results were limited to small discrete values (5RT139-5RT140).

Specifically, Base One found that there were only eight values

possible for the IR detector and sixteen for the EC sensor

(5RT140). Shaffer, however, said the range of possible values

was significantly higher, with the IR about 12,000 and the EC as

low as 100 and as high as the thousands (6RT139-6RT140). By

multiplying 4096 all possible values that can be observed from

the IR system by a sine wave, the IR value could be as high as

22,000, which gave tremendous precision (5RT139).

 Shaffer defined "a defect" as anything which does not work

in accordance with the specifications (5RT126;6RT30). He

 73

expected to see defects in the development process, and

estimated an average of one defect in each version of the source

code sent to customers (6RT31-6RT32). By his definition,

defects might include typographical errors, misunderstandings

about specifications, or anything else which caused some

undesired result (6RT32-6RT35).

 Shaffer was the creator of the buffer overflow defect

(5RT39-5RT40;5RT154). He was quite surprised and impressed that

SysTest found this problem which had remained undetected despite

significant white-box and black-box testing (5RT49-5RT50).

Shaffer inadvertently introduced the buffer overflow when he

implemented the post-Foley third-test changes requested by New

Jersey (6RT19-6RT20). Specifically, he added a section of code

without changing the initialization of the variable to allow it

to accommodate six instead of four values (6RT19;6RT94). Thus,

the code allocated four spaces for data when it needed six

(6RT95). The sorting routine that created the buffer overflow

occurred only in New Jersey, not in other jurisdictions

(10RT231-10RT232;10RT246).

Buffer overflows can have far-reaching effects (5RT50).

After studying the specifics of this particular overflow,

Shaffer concluded that it occurred only in limited situations

where (1) breath tests one and two were not in tolerance with

 74

each other, (2) a third test was required, and (3) the EC result

of the second breath test was the lowest of the six values

(5RT46-5RT48). In these cases, the code only allowed the

instrument to allocate to its "temporary scratch pad" four of

the six values within the locally declared variable (5RT40-

5RT42). By overwriting the true lowest value as a .32, the

instrument was unable to recognize that EC second test value as

the lowest when the software went through the sorting routine

(5RT43-5RT46). Consequently, the instrument reported the

second-lowest value for the breath test result (5RT46). The

overflow error did not affect the six alcohol breath test

results printed on the AIR, which came from global variables

(5RT42). To correct this buffer overflow, Shaffer simply would

change the number four to six at the appropriate place in the

code and then recompile the code (5RT49).

Shaffer did not think it necessary to exclude the use of

the AIR in all pending third-test cases (6RT120-6RT121).

Instead, he crafted a series of instructions to determine if the

buffer overflow had an effect and to find the true reported

breath test result (6RT121-6RT122;10RT234-10RT235;CR-3). The

instructions consisted of twelve discrete mathematical

operations shown in green on exhibit CR-3 involving addition,

subtraction, multiplication and division, and some other steps

 75

involving basic comparisons or copying from other lines

(10RT235). Shaffer explained that these calculations were

necessary to determine if breath test three was within tolerance

of breath tests one and two, and that it would be incorrect to

select the lowest of the six unaffected test results on the AIR

(10RT237-10RT238).

 Shaffer understood there were no cases in Middlesex County

in 2005 which required a third breath test due to lack of

tolerance (5RT46-5RT47;5RT155-5RT156). He further understood

that some third tests would be generated when New Jersey

tightened its tolerance requirement (5RT156). Shaffer,

therefore, recommended that New Jersey include the buffer

overflow correction on its change request list (5RT184).

According to Shaffer, the only other defect pending in New

Jersey occurred in very specific circumstances where an

instrument did not wait quite the full two-minute period between

subject samples (5RT132-5RT133). He also recommended correcting

this defect (6RT116).

 In contrast to Workman's testimony, Shaffer stated that

data logs were part of the Alcotest's source code and were

enabled in version 3.11 (10RT230). These logs stored data

within the instrument's memory such as the time stamp of each

event which occurred within the breath testing sequence, the

 76

individual IR and EC results, and the aborted tests (10RT230-

10RT231). This data could be retrieved from the memory of each

instrument (10RT231). New Jersey also could retrieve this data

on a statewide basis, but it has chosen not to do so up to the

present (10RT231).

 Shaffer also testified that the fuel cell changes or

depletes throughout its life (6RT104). Because older fuel cells

tended to underreport the ethanol level, engineers in Germany

inserted into the source code an algorithm or aging compensation

routine to address this drift over time (5RT222-5RT223;6RT105).

Because IR detection remains unaffected by age, the algorithm

performed a fine-tune adjustment in the EC value (6RT108-

6RT109). Depending on the IR result, there could be an

adjustment, but only up to 25% of the difference between the IR

and EC results (6RT108-6RT109;6RT126;10RT243). In other words,

if during the first control test, the EC reading was out-of-

target with the IR reading, the EC could be corrected up to 25%

of the EC-IR difference (6RT126). This algorithm compensated

for the inevitable aging which took place during the twelve-

month calibration cycle (10RT233).

 The aging compensation routine occurred several times in

the source code (10RT233-10RT234). Except in two cases, the

routine was "commented out" and in one of the remaining cases it

 77

was disabled (10RT234). Thus, the routine occurred or was

"called" only once in the code, which represented two instances,

both of which involved control tests (10RT234).

 Shaffer stressed that the aging compensation routine occurs

only during a control test under certain special circumstances,

and not during the analysis of a subject's breath (10RT232).

Thus, he believed the Alcotest used two independent technologies

to analyze breath samples (10RT232-10RT233).

 In response to the court's questions, Shaffer explained the

process this way:

THE COURT: This discussion, I read your
earlier testimony about the circumstance
where the EC may be borrowed by the IR under
certain conditions and influence the IR
reading. You heard Mr. Workman describe
that.

 Do you have any comment on that further
than what I've read? You remember what you
said —

THE WITNESS [Mr. Shaffer]: I do. Not to
the word, but certainly the concept.

 I heard prior testimony from other
witnesses that misstated the circumstances
in which this occurs. The truth is that
this occurs only during a control test, and
even at that time it only occurs under
certain circumstances. It never occurs
during the analysis of a subject's breath
sample. There are two independent
technologies analyzing that sample at any
time that we're collecting a breath sample
where the instrument says please blow.

 78

THE COURT: What is the point of this
borrowing from the IR — I mean EC value?

THE WITNESS: The main thing that I want to
clarify is that this is an aging
compensation routine. The — some
electronics or some radios even have a macro
or a big tuning adjust knob and there's a
fine adjust knob. Think of it in terms of
this. The macro, the big adjustment, is
being performed by the fact that we are
integrating that area underneath the EC
curve. That takes care of the aging
compensation almost in its entirety. There
is this algorithm in place to account for
the fine tuning, the adjustment, that is
required to compensate for the aging that
does occur in between the 12-month
calibration cycle.

[10RT232-9 to 10RT233-15.]

 When asked to explain anomalistic discrepancies between an

AIR and a new solution report from Longport, Shaffer refused to

speculate on the cause without more information such as the data

log from the instrument (6RT117-6RT118;AB-1;AB-2). In that

case, the solution control lot was left blank on the AIR but not

on the solution report; the expiration data also was left blank

and the reported bottle number was zero (6RT118). Shaffer said

the problem could be related to the software or hardware

(6RT119). In any event, this court specifically finds that such

incomplete AIRs should never be used for evidentiary purposes.

 79

Finally, Shaffer testified that a subject should not be

able to suck air into his lungs from the breath hose if the

hardware worked as intended and the flapper valve was sealed

properly (10RT245-10RT246). But even in this unlikely scenario

 sucking air out through the instrument the reading would be

a nonincriminating .000 in this event, as in D-129 (the three

AIRs from Middlesex towns Milltown, South River, and East

Brunswick).

 Shaffer recommended that New Jersey's next firmware version

consider: (1) updating for current daylight savings time; (2)

allowing a full 120-second delay between the collection of two

subject breath samples; (3) forcing the instrument to reset upon

encountering an illegal opcode trap; (4) correcting the buffer

overflow defect; and (5) tightening the tolerance between breath

tests by half (6RT116-6RT117;6RT123-6RT124).

 This court was most impressed by Shaffer's candor,

cooperation, careful explanations, and dignified demeanor. We

found his testimony completely reliable and forthright.

IV. FINDINGS AND CONCLUSIONS OF LAW

1. The Beginning Of The End

 Our charge in this limited remand was to determine whether

software in the Alcotest "reliably analyzes, records and reports

alcohol breath test results" (Order at 2). That order requested

 80

us to advise the Court of the "effect, if any" of the expert

opinion rendered on the "findings and conclusions contained" in

our original February 13, 2007 report (Order at 4).

 We now conclude that the proofs presented at the original

hearing and at the remand hearing combine to satisfy this court

that the Alcotest is scientifically reliable, both as to

software and hardware, in reporting alcohol breath testing

results for evidentiary purposes. We make this finding by the

clear and convincing evidence burden of proof placed on the

State.

The proofs at the limited remand hearing on the software

and the source code aspect did not change our opinion on

reliability and trustworthiness of the instrument but reinforced

our initial view. We are also so convinced based on the

assumption that the recommendations we made in our original

report and in this report are followed in the future to ensure

the continuing and possibly improved accuracy of breath test

results (see Initial Findings and Conclusions).

 We are firmly convinced that the Alcotest is much more

reliable than the prior state-of-the-art breath testing

instrument, the breathalyzer, which has been used in the past in

New Jersey, and is still used in four counties. The Alcotest

essentially functions independently of operator influence,

 81

unlike the breathalyzer, which is very dependent on the operator

and produces no objective and permanent record of test results.

The Alcotest is also much more precise.

 Based on the testimony with respect to the source code

which we heard at this twelve-day remand hearing we make these

further findings and recommendations, supplementing our original

thoughts. Quite obviously, developing source code in this

context is a dynamic, evolutionary process, not a static

undertaking. The process should be re-examined and re-evaluated

periodically and neither the legal nor the forensic community

should fear improvement of the accepted wisdom when necessary.

We should fear stagnation; we should not create an idolatry of

the status quo. And simply because a procedure can be improved,

does not necessarily mean the older model was illicit or

worthless.

 2. The Critical Issues

 We now summarize the critical issues raised at this second

hearing and provide our recommendations.

A. Fuel Cell Drift

 Wisniewski: He found a section in the code where he said

the IR reading mathematically modified the EC reading. He said

that section could be called or activated from seven different

paths in the code. Thus, under certain conditions, the code

 82

would take the results of the calculations under the EC curve

and divide them by the IR average.

 Workman: He agreed with Wisniewski's finding that the EC

and IR sensors did not operate independently as represented by

Draeger. He explained that fuel cells were very common devices

which depleted over time until at some point they ceased to

function. He described the depletion as a function of time and

the fuel cell's use. As fuel cells drift, they did not give the

same output just as a battery flashlight becomes weaker with

time.

 When the Alcotest's fuel cell drifted out of tolerance, the

instrument used an IR value to compute an electrochemical

result. Workman thought that the adjusted EC value then was

used in the ambient air blanks and succeeding breath tests.

Workman believed that adjustment was made in the first and last

control tests based on Wisniewski's finding that it was called

from seven different places within the code. Even if the

adjustment was made only in the first control test, it still

would affect everything that followed it. Workman could not

find any warning about fuel cell drift in Draeger's operator

manual. He would fix the problem by stopping the test,

shutting the machine down, and putting out a message that the

fuel cell had drifted out of tolerance and required replacement.

 83

 Shaffer: Fuel cells changed overtime. Because older fuel

cells tended to underreport the ethanol level, the engineers in

Germany inserted into the source code an algorithm or aging

compensation routine to address the drift over time. Because

the IR detection remained stable and unaffected by age, the

algorithm performed a fine-tune adjustment in the EC value.

Depending on the IR result, there could be up to a 25%

adjustment of the difference between the IR and EC results. In

other words, if during the first control test, the EC reading

was out of target with the IR reading, the EC could be corrected

up to 25% to bring it into tolerance with the IR. This EC

depletion algorithm compensated for the aging whih occurred

during the twelve-month calibration cycle.

 The aging compensation routine occurred several times in

the source code. Except in two cases, the routine was

"commented out" and in one of the remaining cases it was

disabled. Thus, the routine occurred only once in the code,

which represented two instances both of which involved control

tests. Because the adjustment never occurred during the

analysis of a subject's breath, Shaffer maintained that the

Alcotest employed two independent technologies to analyze breath

samples.

 84

 Recommendation: We accept Shaffer's testimony and

explanation. He clearly explained this issue, which we have

quoted at 77-78 supra and we fully credit his testimony in this

regard. This explanation may reflect on Draeger's marketing

claim that it uses two completely independent technologies. We

conclude that this depletion explanation does not undermine the

scientific reliability of the breath measurement. The standard

of measurement is adjusted for fuel cell depletion, not for any

alcohol content. We recommend that the Alcotest should be

calibrated every six months rather than every twelve months and

the fuel cell replaced at that time, if necessary.

B. The Buffer Overflow

 Geller: The buffer overflow occurs when a program attempts

to store more bytes or units of information in an allocated

variable which is not large enough. Geller used the analogy of

trying to park a full-sized Cadillac in a compact-car parking

space. After Fortify SCA warned of a potential overflow, Geller

opened the code to the particular file and function, and saw a

situation in the source code where six bytes were stored into a

space allocated to hold only four. The two overhanging values

then were used by the next two declared variables and thus were

overwritten.

 85

 Geller explained that the buffer overflow affected one

small part of the AIR, and not the way in which the Alcotest

7110 made any of its breath test calculations. Specifically, it

arose only in these limited circumstance: (1) the results of

the first two breath tests were out of tolerance; (2) a third

breath test was taken; (3) the result of the third breath test

fell between the values of the first two and was centered enough

to be within tolerance of both of them; and (4) the ER result

from the second breath test was the lowest measured value. In

such cases, the AIR would not report the lowest breath test

result. The overflow problem easily could be corrected with one

keystroke by replacing the number "four" with a "six" at this

array in the code. Geller also correctly testified that Base

One's report did not discover and describe the buffer overflow

problem.

 Dee: While Dee recognized the potential significance of a

buffer overflow, he believed it was a limited vulnerability.

He described the problem as a situation where six values must be

put into four boxes. Given the closed nature of the

application, Dee explained that the situation in which the error

occurred three tests with similar values was uncommon. For

that reason, he surmised that the problem never actually arose

in field testing and that it took a program tool specialized in

 86

exposing vulnerabilities to raise it as an issue. That program

tool, Fortify SCA, checked the source code for approximately 150

different kinds of exposure and code issues. Dee said the error

could be easily fixed and recommended that it be corrected in a

future release.

 Shaffer: He inadvertently introduced the buffer overflow

when he implemented the post-Foley changes requested by New

Jersey. Specifically, he added a section of code without

changing the initialization of the variable to allow it to

accommodate six instead of four values. Thus, the code

allocated four spaces for data when it really needed six. The

sorting routine that created the buffer overflow occurred only

in New Jersey, not in other jurisdictions.

The buffer overflow occurred only in limited situations

where (1) breath tests one and two were not in tolerance with

each other, (2) a third test was required, and (3) the EC result

of the second breath test was the lowest of the six values. In

these cases, the code only allowed the instrument to copy four

values within the local variable causing the other two values to

be overridden. By overwriting a .32 for the EC value from the

second test, the instrument was unable to recognize that EC

value as the lowest as it went through the sorting routine and

instead, reported the second-lowest value for the breath test

 87

result. The error did not affect the six alcohol results from

the three breath tests printed on the AIR, which were never

overwritten.

To correct the buffer overflow, Shaffer simply would change

the number four to six at the appropriate place in the code and

then run the code through the compiler. For pending cases, he

did not think it was necessary to prohibit the use of the AIR in

all third-test cases. Instead, Shaffer crafted a series of

instructions to determine if the buffer overflow had an effect

and to find the true reported breath test result. The

instructions included twelve discrete mathematical operations

involving addition, subtraction, multiplication and division,

and several other steps. Shaffer explained that these

calculations were necessary to determine if breath test three

was within tolerance of breath tests one and two, and that it

would be incorrect to just select the lowest of the six

unaffected test results on the AIR. Shaffer recommended that

New Jersey correct the buffer overflow defect.

Recommendation: As to pending cases, either prohibit the

use of the BAC evidence in all third test cases or use Shaffer's

formula, which the State agrees is appropriate to correct the

overflow error. Because the buffer overflow is a real error in

the source code, this must be corrected.

 88

C. Weighted Averages

 Workman: He believed the most significant problem

uncovered by Lint was the Alcotest's averaging routine. Instead

of computing a simple arithmetic average by adding a set of

numbers and dividing by the total number in the distribution, he

said a weighted average takes into account the number of times

each value is present. Draeger claimed to use a weighted

average when the Alcotest processed the IR measurements of the

alcohol content in human breath. It actually averaged the final

measurement on the continuum with the sum of the three previous

measurements. By minimizing the earlier values and giving half

the weight to the final value, Workman said the formula was

scientifically unreliable as an "average."

 While acknowledging the final point was a valid reading,

Workman maintained it should have no more weight than the three

previous values. He recognized, however, other instances where

later values were given greater weight because they were more

important, referring to the Bayesian probability formula used to

predict the future based on past events.

 Shaffer: He defended the use of weighted averages, stating

it was absolutely appropriate to assign the greatest weight to

the most recent value for the purpose of making a very accurate

breath test measurement. He explained that individual samples

 89

of breath from the IR measurement were taken every 8.192

milliseconds but that the weighted average routine only

considered the points derived from them every .25 seconds. By

relying on samples taken at .25-second intervals, the weighted

average was really less than the value of the last reading.

 Recommendation: None. We accept Shafer's tstimony and use

of the weighted average which accurately and fairly measures

blood alcohol content in the subject.

D. Lack of Standards

 Wisniewski: Wisniewski said that standards or

development methodologies produce the most error-free and

reliable software. They also made software easier to maintain

and produce more robust overall systems. They saved money in

the long run. He recommended that Draeger adopt one of five he

listed in his report or develop its own. However, he conceded on

cross that the present code followed a known, function-oriented

methodology which he said applied to the software only.

 Workman: It is possible to achieve 99.98% reliability by

applying standards to software development. He did not know if

any breath testing instruments on the market had achieved that

level of reliability. Use of standards would dictate the

complexity of the modules, discourage the use of global

variables, and establish testing processes and procedures.

 90

 Geller: He did not know if there were any industry

standards which governed source code review. In Geller's

opinion, quality software could be developed without standards

and conversely, software could meet standards but still be of

questionable quality. He was not personally familiar with any

of the standards cited in Base One's report nor did he know if

Draeger applied any standards to the Alcotest source code.

 Dee: He did not agree with Base One's criticism of the

Alcotest's lack of standards. In his opinion, such standards

usually referred to the design and documentation of the code,

and rarely addressed the code's performance. He was unaware of

any standard against which the United States evaluated software.

Moreover, he objected to Base One's reference to standards

without stating which specific provisions were violated. He

said it was possible to fully test the source code given the

singular or specialized function of this application.

 Shaffer: He was unaware of any single industry standard

for software development. He referred to "industry standards"

as collections of techniques and common-sense wisdom which had

proven effective over time. Shaffer did not agree with Base

One's assertion that the failure to use industry coding

standards prevented the testing of critical paths in the

Alcotest's software including 3200 lines of code designed to

 91

make decisions. Because the Alcotest in the United States was

highly configured to meet the requirements of specific

applications, all of the 3200 lines of decision code as

calculated by Base One were not relevant. Shaffer also said

there were many unused or uncalled modules or sections of code

by design. Shaffer did say standard style would be helpful but

was not necessary.

 Recommendation: None. The testimony of Geller, Dee and

Shaffer discussed this topic persuasively and we see no need to

recommend any particular style or standard.

E. Cyclomatic Complexity

 Geller: He relied on the cyclomatic complexity metric

developed by Thomas McCabe in 1976 to measure the number of

potential paths through the code. Because high complexity

increases the risk of inherent defects, coding guidelines

recommend keeping the cyclomatic complexity of functions under

ten, and or even seven. The SysTest report identified more than

eighty-one modules in excess of ten and three in excess of a

hundred. While the report recommended restructuring the code to

make it less complex, Geller said the complexity indices did not

influence the instrument's accuracy. Nor did excessive

complexity cause failures in the interfaces between software and

hardware. However, the higher complexity made the code more

 92

difficult to understand and maintain, placing an increased

burden on the programmers who worked with the software.

 Dee: He did not believe that cyclomatic complexity

affected the instrument's performance. To the contrary, he

believed that the presence of large numbers of "decision trees"

in one module was better than breaking them up into additional

modules in terms of system performance. He defined decision

trees as boxes containing expressions of code out of which

branched other boxes, with a calling program or "main module"

directing which box to go to depending on what the code said to

do. Thus, Dee considered cyclomatic complexity as a stylistic

issue which implicated a tradeoff between performance and ease

of maintenance.

 Workman: He said the code was too complex and could not be

demonstrated as reliable.

 Recommendation: None, because this goes to style and not

the accuracy of the Alcotest. We accept Geller's and Dee's

testimony as persuasive that the Alcotest performs accurately at

this level of complexity.

F. Design and Style

 1. Older Style

 Wisniewski: Although the code was created between 1993 and

1997, it was written in a style reminiscent of the 1970s and

 93

1980s. Wisniewski did not consider that a criticism, and

acknowledged that Draeger had done a "great job" of adhering to

the older style. He further said that it was not necessary to

always adopt the newest technology, and that many people

preferred to stay with the familiar.

 Geller: The source code was written by more than one

programmer and evolved over numerous transitions. It contained

comments written in German and English, which comments he

explained served as memory joggers for the programmer who wrote

them and as advice to future programmers. Geller used the

comments to find his way through the code.

 Geller acknowledged the code was not written in a manner

consistent with usual software design "best practices." While

such practices are described in various publications,

programmers often have to adapt them to fit the available

resources. In cases where a code deviated from best practices,

it still is safe to use but this places an added burden on

programmers to understand it. Geller did not find anything in

the code that looked intentionally written to skew the results.

Overall, he found there was nothing particularly unusual about

the Alcotest software in terms of its style and organization.

 Dee: He understood that the source code was written

between 1993 and 1997. Although he only scanned the code, he

 94

saw about three or four different writing styles. He did not

know if Draeger gave its programmers requirements documents with

instructions on how to code.

 Workman: Workman believed it was impossible to write

perfect source code because (1) human beings, by nature, were

fallible, (2) specifications changed over time, and (3) codes

like the Alcotest's contained trillions of paths which made it

impossible to find and fix all the errors.

2. Global Variables

 Geller: The code uses global variables to store test and

result data. Unlike locally declared variables designed for

specific purposes within small subsets of the code, global

variables are accessible from any function within the

application. Also unlike local variables which pass out of

existence after their use, global variables can be used

throughout the duration of the program. Thus, they make

information available without the resources required to pass a

value from one function to another.

 However, data contained in global variables is not

protected and can be changed intentionally or unintentionally at

any time by any function. Because they can be potentially

modified from anywhere, global variables should not be used to

store critical data. Given the increased risk of program error,

 95

their use should be extremely limited. Nonetheless, Geller said

there was nothing inherently wrong with global variables and

their presence did not impact negatively on his conclusion that

the Alcotest's software was reliable. In fact, he said that

some computer languages such as COBOL and assembly use only

global variables.

 Wisniewski: He said Lint flagged defects including the use

of a local variable as a global and vice versa, and the

assignment of the same name to local and global variables. He

described these as confusing and inconsistent, and expressed

concern that they might affect some other operation in the

program such as calibration. However, he acknowledged that

identically named local and global variables would not confuse

the compiler because the local would take precedence over the

global declaration. He also admitted that there were legitimate

reasons to use global variables. Time constraints prevented him

from determining if a global variable actually was misused and

changed the result on an AIR. Indeed, he was unable to identify

anything in the code that posed a real problem that would affect

a result on the AIR.

 Dee: He addressed SysTest's and Base One's issue of the

source code's extensive use of global variables. He agreed that

a programmer must be careful to avoid overwriting a global

 96

variable written by someone else. If an error occurred, a

global variable would remain until the system was reset, re-

initialized or re-powered whereas a local variable remained only

for the particular calculation and then was gone. On the other

hand, the use of global variables conserved memory and increased

efficiency by reducing performance time. It also would be

expensive to change everything to local variables. In any

event, the presence of global variables did not concern Dee

because the source code made extensive use of local variables

and only kept what was common to all modules at the global

level.

 Shaffer: There are approximately 200 global variables in

the Alcotest's source code and 1500 local variables. The use of

globals is a tradeoff. On the downside, they placed an

additional burden on programmers to exercise caution when

adjusting the code to avoid unintended consequences such as

overriding local variables or assigning to a new module a name

already used by a global variable. On the upside, global

variables were easily accessible in all modules of the program,

and contained information for the use of such things as

calibration which Shaffer wanted the instrument to remember

after it was turned off. Their use also resulted in far less

complexity and overhead, and made the code easier to design.

 97

Moreover, to reduce their number, Shaffer would have to add more

code and functions which, in turn, would create higher

complexity. He also would have to touch more portions of the

code than otherwise necessary. Shaffer emphasized that the

decision to use global variables was made in the design process

and that he did not consider their presence as a deficiency in

the product.

3. Headers

 Wisniewski: He was unable to determine when sections of

the code were modified because there were no headers to track

that information. The lack of headers made the code unreliable.

Shaffer: Headers can identify the last time a section of

code was modified and the name of the programmer who made the

change. He did not consider them a priority because he usually

worked alone or as part of a very small engineering team. If he

worked with a larger engineering team, Shaffer acknowledged that

the header comments would have far more value. To determine

when a module was changed, Shaffer compared previous versions of

the code using other tools. For example, he used "diff

programs" which highlighted the lines of code that were changed

and the way they were changed, allowing him to interpolate file

creation dates.

 98

4. Core Routines

 Geller: He was not concerned that the software did not

contain confidentiality or copyright notices, or that core

sections or routines were not "walled off." Geller explained

that programmers must exercise caution, but he never had an

arbitrary classification which restricted access to any part of

a code.

 Wisniewski: The code did not distinguish between core and

customized sections. He believed that programmers should be

able to touch the core software in order to learn more about it.

If Draeger wanted to protect the core, however, he recommended

taking the core routines out of the regular code and filing them

in accessible "libraries" of object modules. The programmers

would then get a reference with the library routines, and the

core algorithms would be protected from change.

 Shaffer: The core routines related directly to the

measurement of alcohol. Because these algorithms were time-

tested, field-tested, and NHTSA-tested, Shaffer avoided them.

While there was no black-and-white designation of these "walled-

off" sections of code, he was alerted to their presence by

comments from previous developers, and discussions with Ryser

and Draeger's engineering supervisor. Shaffer acknowledged it

 99

would be easier to find the core routines if they were

documented in the code, but did not believe it was necessary.

5. Comments

 Wisniewski: He found several inconsistencies in the code's

comments, which must be fixed. For example, he found a comment

in the code stating that a conversion to "%BAC" needed to be

done, but it was not done. He also found comments which said

values should be averaged, but found that the source code

instead performed weighted averages or successive averaging

routines. Wisniewski said such comments could affect the breath

test result if they were unintentionally executed; otherwise,

they merely reflected a sloppy coding style. He acknowledged,

however, that comments were not compiled and never reached the

object code.

6. Uncalled Functions

 Wisniewski: He identified fifty-one functions in the

source code which were not used. Wisniewski said these uncalled

functions were confusing, untidy, and unnecessary, and should be

purged from the executable code.

 Dee: Dee acknowledged that SysTest's report identified

numerous unused or uncalled modules, which took up memory and

space in the source code. While their presence could be due to

the sloppiness of programmers, he believed they were typical of

 100

software development projects where code was being used by

multiple customers, decommissioned, or developed for future

releases. Dee explained that it was more convenient to leave

these unused functions in the code than to remove them. In any

event, Dee said their presence was a question of style, and did

not effect the reliability or results of the executed code.

 Shaffer: There were many unused or uncalled modules or

sections of code by design.

 Recommendation: These design and stylistic issues are not

within the scope of our recommendations. They are matters of

the creator's preference and do not relate to the efficacy of

breath testing in our view.

G. Catastrophic Error Detection or Illegal Opcode
Trap

Wisniewski: Draeger disabled an interrupt that otherwise

would detect when the microprocessor was trying to execute an

illegal instruction or indefinite branching. By turning off

this safeguard, the Alcotest possibly could produce

unpredictable results.

 Geller: He disagreed with Wisniewski's finding that the

instrument could produce unreliable results because its

catastrophic error detection was disabled. When this situation

occurred Geller expected that the instrument would go into an

 101

endless wait cycle, meaning it would basically cease to

function, and not produce a result.

 Dee: It was standard operating procedure in mature systems

to disable the capabilities of the processor that detect

catastrophic errors. Dee explained that these aborts were

disabled and replaced with software which "captured" the errors

so that a determination could be made as to whether the error

was recoverable or not, or whether a more meaningful message

must be written.

 Shaffer: He said that when the microprocessor encountered

a command or a memory location that it did not recognize such

as when an instruction in the stack or temporary memory area

became corrupted the microprocessor could lose its place in

the script and jump to another section of code. When the

microprocessor attempted to execute the code at the new

location, it could become confused and fail to respond

appropriately.

Shaffer said it was highly likely that the hardware would

"lock up" or freeze so that it would be impossible to complete a

breath testing sequence in these cases. Because the operator

would immediately become aware of the situation, there would be

no risk to the subject of a false reading.

 102

 Recommendation: We recommend that Draeger reset the

microprocessor so that whenever the instrument detects an

illegal opcode trap the memory will clear and start anew, as if

the instrument was turned off. Based on Shaffer's discussions

with his engineering colleagues in Germany, Draeger already has

begun to implement this reset feature with its other customers

in the United States. He did not want to touch New Jersey's

program until this case is concluded.

H. Error Detection Logic

 Wisniewski: He claimed the software design detects

measurement errors but does not report an error message unless

the errors occur thirty-two times. In the court's view, that

means the instrument will report the 32nd error. Wisniewski

maintained this meant an error could occur thirty-one times, but

remain unreported.

 Dee: He disagreed with Wisniewski's statement that the

source code "ignored or suppressed" error messages unless they

occurred a large number of consecutive times. In his opinion,

it was normal in embedded systems to wait for the coordination

of the application with the operating system or hardware. Thus,

the purported error did not mean that something was wrong but

rather that something was not ready. For example, there might

 103

be slight timing differences between internal components that

need adjustment.

 Shaffer: Measurement errors in the Alcotest must occur

thirty-two consecutive times before they are reported. He said

the common practice in electrical engineering was to ignore

error messages unless they occurred a large number of

consecutive times. This technique has several advantages: (1)

all sensors have a natural range of values and it would be

surprising for them to rely on only one decision point; (2) the

use of thirty-two events also allows Draeger to set tighter

tolerance ranges to avoid falsely triggering errors.

 Recommendation: We accept the Dee and Shaffer view that an

error message is communicated effectively when stabilized,

accurate and reliable. We see no need for a change.

I. Software Program Tool - Lint

 Wisniewski: Wisniewski selected Lint to find defects in

the source code's C language syntax, data initialization, and

data management. He used a cost-free program tool derived from

Lint called Splint, version 3.1.2, which raised warnings or

flags, which Wisniewski called "defects" because they required

action whether they were serious or harmless flaws. Wisniewski

customized Splint to display all the warning or defect messages,

and found about 19,500.

 104

 Lint was wordy or verbose because it tended to produce a

number of defects, including repetitive examples of the same

coding style. Despite its "voluminous" output, he maintained

that disciplined coders would want to know about these defects

and remove them to avoid any possible confusion or chance the

code might not work correctly. Although the presence of these

defects did not prove the software program would fail to

execute, they indicated the lack of use of industry coding

standards.

 To insure the source code's reliability, Wisniewski said

every defect should be removed. He would undertake an

aggressive, ongoing campaign to find and dispose of them as part

of what he called the software life cycle. Wisniewski estimated

that it would take about one year to fix all the defects in the

Alcotest's source code.

Defects ranged from substantive problems to variations in

programmer style and organization. Some of the defects appeared

numerous times, like print interrupts which were flagged about

2000 times. The Lint program did not categorize the warnings or

flags, nor did it quantify any of the messages. Wisniewski did

not propose corrections to any of the defects he identified in

the source code nor did he check to see if they applied to

functions used in New Jersey.

 105

 Geller: Lint was created as a development tool, not a

review tool. It was outdated after the development of personal

computers and it produced output not particularly informative to

programmers.

 Dee: Lint was a product of the 1970s and was not commonly

used today. He believed that IDEs replaced the need for Lint by

keeping a programmer within the parameters of the proper syntax

during the coding process.

 He was "outraged" when he reviewed Appendix C in Base One's

report which purported to find "errors" in 19,000 of the 45,000

lines of code. Dee objected to Base One's attempt to quantify

the errors. For example, Lint generated approximately 7657

lines of warnings based on its misunderstanding that the "U_-

byte" variable was undeclared or used incorrectly. Dee later

explained these lines might have values which truncated the

lower digits and retained the higher values. Also, Lint ignored

the quality of the errors, and improperly flagged "comments

within comments." Based on the alleged errors, Dee believed

that Lint did not understand some of the specific code needed

for embedded system. He would not have used Lint to review the

Alcotest's source code.

 Recommendation: Notably, Lint did not disclose the buffer

overflow error but Fortify SCA, used by Geller, did disclose

 106

this error. The alleged hypothetical probability of

irregularities raised by Lint are much too speculative and

unreliable to recommend abandonment of the Alcotest on these

grounds. See State v. Harvey, 151 N.J. 117, 171 (1997) (holding

general acceptance of scientific evidence "does not require

complete agreement over the accuracy of the test or the

exclusion of the possibility of error").

 We accept the testimony of Geller, Dee and Shaffer that the

source code in these respects is reliable and reject Wisniewski

and Workman's claims as too speculative.

J. Source Code Writing and Review

Although perhaps not critical, Shaffer's following

recommendations should be considered as helpful in improving the

product: (1) it is easier to find core routines if they are

documented in the source code, but not necessary; (2) a more

highly organized and consistently structured presentation would

make the source code more readable and easier to sort, but would

not make the code more understandable; and (3) a dedicated

quality assurance person or outside expert who functioned in

that role with respect to the source code review process would

give Shaffer and Draeger a higher degree of certainty about the

code.

 107

V. FURTHER CONCLUSION

 If any of the categories of data fields in the AIR are

incomplete in any respect, e.g., missing calibration data, no

part of the AIR can be used by the State for purposes of finding

guilt. A BAC finding of .08 or above in such circumstance may

not be admitted into evidence.

 Foundational materials should be provided in all contested

cases, not just in pro se or unrepresented cases as per our

initial opinion. With reference to Addendum A in our initial

opinion, and in the public interest, the State Bar, through its

counsel Jeffrey E. Gold of Cherry Hill, is entitled to written

notice of any proposed software revisions.

We again express our gratitude for the very valuable work

in this matter by our Appellate Division Staff Attorney Olga

Chesler, Esquire, and for her excellent contribution to

completing this difficult task both throughout the twelve-day

hearing and the supplemental opinion preparation process. Many

thanks, Ms. Chesler.

 108

APPENDIX A — TRANSCRIPTS

1RT — transcript of September 17, 2007
2RT — transcript of September 18, 2007
3RT — transcript of September 19, 2007
4RT — transcript of September 20, 2007
5RT — transcript of September 24, 2007
6RT — transcript of September 25, 2007
7RT — transcript of September 26, 2007
8RT — transcript of October 9, 2007
9RT — transcript of October 10, 2007
10RT — transcript of October 11, 2007
11RT — transcript of October 23, 2007
12RT — transcript of October 24, 2007

